Background: Rhizocephalan interaction with their decapod hosts is a superb example of host manipulation. These parasites are able to alter the host's physiology and behavior. Host-parasite interaction is performed, presumably, special modified rootlets invading the ventral ganglions.
Methods: In this study, we focus on the morphology and ultrastructure of these special rootlets in (Lützen & Takahashi, 1997), family Polyascidae, invading the neuropil of the host's nervous tissue. The ventral ganglionic mass of the infected crabs were fixed, and the observed sites of the host-parasite interplay were studied using transmission electron microscopy, immunolabeling and confocal microscopy.
Results: The goblet-shaped organs present in the basal families of parasitic barnacles were presumably lost in a common ancestor of Polyascidae and crown "Akentrogonida", but the observed invasive rootlets appear to perform similar functions, including the synthesis of various substances which are transferred to the host's nervous tissue. Invasive rootlets significantly differ from trophic ones in cell layer composition and cuticle thickness. Numerous multilamellar bodies are present in the rootlets indicating the intrinsic cell rearrangement. The invasive rootlets of are enlaced by the thin projections of glial cells. Thus, glial cells can be both the first hosts' respondents to the nervous tissue damage and the mediator of the rhizocephalan interaction with the nervous cells. One of the potential molecules engaged in the relationships of and its host is serotonin, a neurotransmitter which is found exclusively in the invasive rootlets but not in trophic ones. Serotonin participates in different biological pathways in metazoans including the regulation of aggression in crustaceans, which is reduced in infected crabs. We conclude that rootlets associated with the host's nervous tissue are crucial for the regulation of host-parasite interplay and for evolution of the Rhizocephala.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655712 | PMC |
http://dx.doi.org/10.7717/peerj.16348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!