Bone has the fascinating ability to self-regenerate. However, under certain conditions, such as type 2 diabetes mellitus (T2DM), this ability is impaired. T2DM is a chronic metabolic disease known by the presence of elevated blood glucose levels that is associated with reduced bone regeneration capability, high fracture risk, and eventual non-union risk after a fracture. Several mechanical and biological factors relevant to bone regeneration have been shown to be affected in a diabetic environment. However, whether impaired bone regeneration in T2DM can be explained due to mechanical or biological alterations remains unknown. To elucidate the relevance of either one, the aim of this study was to investigate the relative contribution of T2DM-related alterations on either cellular activity or mechanical stimuli driving bone regeneration. A previously validated in silico computer modeling approach that was capable of explaining bone regeneration in uneventful conditions of healing was further developed to investigate bone regeneration in T2DM. Aspects analyzed included the presence of mesenchymal stromal cells (MSCs), cellular migration, proliferation, differentiation, apoptosis, and cellular mechanosensitivity. To further verify the computer model findings against in vivo data, an experimental setup was replicated, in which regeneration was compared in healthy and diabetic after a rat femur bone osteotomy stabilized with plate fixation. We found that mechanical alterations had little effect on the reduced bone regeneration in T2DM and that alterations in MSC proliferation, MSC migration, and osteoblast differentiation had the highest effect. In silico predictions of regenerated bone in T2DM matched qualitatively and quantitatively those from ex vivo μCT at 12 weeks post-surgery when reduced cellular activities reported in previous in vitro and in vivo studies were included in the model. The presented findings here could have clinical implications in the treatment of bone fractures in patients with T2DM. © 2023 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652174 | PMC |
http://dx.doi.org/10.1002/jbm4.10809 | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.
Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain.
Introduction: Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Center for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.
Cranio-maxillofacial bone reconstruction, especially for large defects, remains challenging. Synthetic biomimetic materials are emerging as alternatives to autogenous grafts. Tissue engineering aims to create natural tissue-mimicking materials, with calcium phosphate-based scaffolds showing promise for bone regeneration applications.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy.
Aim: This review aims to explore the clinical applications, biological mechanisms, and potential benefits of concentrated growth factors (CGFs), autologous materials, and xenografts in bone regeneration, particularly in dental treatments such as alveolar ridge preservation, mandibular osteonecrosis, and peri-implantitis.
Materials And Methods: A systematic literature search was conducted using databases like PubMed, Scopus, and Web of Science, with keywords such as "bone regeneration" and "CGF" from 2014 to 2024. Only English-language clinical studies involving human subjects were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!