The current study presents a simple and cost-competitive method for the development of high-performance superhydrophobic and superoleophilic cotton fabrics coated with cadmium oxide/cerotic acid (CdO/CE)-polycaprolactone (PCL)- and cadmium oxide/stearic acid (CdO/ST)-polycaprolactone-grafted hybrid composites. X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy are used to characterize the CdO/CE-PCL and CdO/ST-PCL and polycaprolactone-modified cotton fabrics. Using an optical contact angle meter, the wetting behavior of corrosive liquids such as coffee, milk, tea, water dyed with methylene blue, strong acids (HCl), strong alkali (NaOH), and saturated salt solution (NaCl) on the CdO-CE/ST/PCL-modified cotton fabrics is assessed as well as the durability of CdO-CE/ST/PCL-modified cotton fabrics in corrosive liquids. Data obtained from the oil-water separation experiment indicate remarkable separation efficiency with oil purity values of ≥99.97 wt %, and high permeation flux values of up to 11,700 ± 300 L m h are observed for surfactant-stabilized water-in-oil emulsions via a gravity-driven technique. From the data obtained, it is concluded that the nano-CdO-grafted superhydrophobic hybrid polymer composite-coated cotton fabrics (CdO-ST/(CE)/PCL/CFs) can be utilized for self-cleaning and oil/water separation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652371PMC
http://dx.doi.org/10.1021/acsomega.3c06790DOI Listing

Publication Analysis

Top Keywords

cotton fabrics
24
superhydrophobic hybrid
8
hybrid polymer
8
polymer composite-coated
8
composite-coated cotton
8
self-cleaning oil/water
8
oil/water separation
8
separation applications
8
corrosive liquids
8
cdo-ce/st/pcl-modified cotton
8

Similar Publications

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

Textronic Sensors of Hazardous Gaseous Substances.

Materials (Basel)

January 2025

Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 18. Stefanowskiego Str., 90-924 Lodz, Poland.

Toxic materials are a threat in workplaces and the environment, as well as households. In them, gaseous substances are included, especially ones without any colour or fragrance, due to their non-detectability with the human senses. In this article, an attempt was made to find a solution for its detection in various conditions with the use of intelligent textiles.

View Article and Find Full Text PDF

Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics.

Int J Biol Macromol

January 2025

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.

The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.

View Article and Find Full Text PDF

Diabetes is a disorder attributed to impaired production or utilization of insulin and requires rapid precise monitoring of glucose levels. The fabrication of nanotechnology-based non-invasive biosensors for glucose detection holds significant promise for improved diabetes care and point-of-care diagnostics. The study demonstrates a novel molecularly imprinted polymers (ADMIPs) based sensitive biosensor for glucose estimation in saliva using three distinct sensing platforms -cotton swab, paper strip and polymeric film by colorimetric assay.

View Article and Find Full Text PDF

Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!