Fuchs' corneal endothelial dystrophy (FECD) is a major cause of vision loss. Corneal transplantation is the only effective curative treatment, but this surgery has limitations. A pharmacological intervention would complement surgery and be beneficial for many patients. FECD is caused by an expanded CUG repeat within intron 2 of the RNA. Agents that recognize the expanded repeat can reverse the splicing defects associated with the disease. Successful drug development will require diverse strategies for optimizing the efficacy of anti-CUG oligomers. In this study, we evaluate anti-CUG morpholinos conjugated to cyclic cell penetrating peptides. The morpholino domain of the conjugate is complementary to the repeat, while the peptide has been optimized for import across cell membranes. We show that morpholino conjugates can enter corneal endothelial cells and block the CUG RNA foci associated with the disease. These experiments support morpholino peptide conjugates as an approach for developing anti-CUG therapies for FECD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652360PMC
http://dx.doi.org/10.1021/acsomega.3c05634DOI Listing

Publication Analysis

Top Keywords

cug repeat
8
morpholino peptide
8
peptide conjugates
8
corneal endothelial
8
associated disease
8
targeting expanded
4
expanded /fuchs'
4
/fuchs' endothelial
4
corneal
4
endothelial corneal
4

Similar Publications

Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function.

View Article and Find Full Text PDF

RNAs are major drivers of phase separation in the formation of biomolecular condensates. Recent studies suggest that RNAs can also undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and structural propensities governs the phase behaviour of RNAs.

View Article and Find Full Text PDF
Article Synopsis
  • Respiration in eukaryotes relies on mitochondrial protein synthesis, which is guided by organelle-specific ribosomes that translate mitochondrial mRNAs, although many details of this process remain unclear.
  • Researchers mapped the 3' ends of mitochondrial mRNAs in different yeast species and identified sequence elements called 3'-end RNA processing elements (3'-RPEs), essential for processing mitochondrial RNA.
  • The study highlights the role of the Rmd9 protein in this processing, showing its interaction with 3'-RPEs across various yeast species, and uncovers a unique translation mechanism involving removed stop codons in certain mRNAs.
View Article and Find Full Text PDF

Muscleblind-like proteins (MBNLs) are a family of RNA-binding proteins that play essential roles in the regulation of RNA metabolism. Beyond their canonical role in RNA regulation, MBNL proteins have emerged as key players in the pathogenesis of Myotonic Dystrophy type 1 (DM1). In DM1, sequestration of MBNL proteins by expansion of the CUG repeat RNA leads to functional depletion of MBNL, resulting in deregulated alternative splicing and aberrant RNA processing, which underlie the clinical features of the disease.

View Article and Find Full Text PDF

Myotonic Dystrophy type 1 (DM1), a highly prevalent form of muscular dystrophy, is caused by (CTG) repeat expansion in the DMPK gene. Much of DM1 research has focused on the effects within the muscle and neurological tissues; however, DM1 patients also suffer from various metabolic and liver dysfunctions such as increased susceptibility to metabolic dysfunction-associated fatty liver disease (MAFLD) and heightened sensitivity to certain drugs. Here, we generated a liver-specific DM1 mouse model that reproduces molecular and pathological features of the disease, including susceptibility to MAFLD and reduced capacity to metabolize specific analgesics and muscle relaxants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!