Antimicrobial resistance (AMR) is currently regarded by the World Health Organization (WHO) as one of the most significant risks to global public health. The most critical causes of AMR infections in humans are the misuse and overuse of antimicrobials in humans and farmed animals. The rising global demand for food of animal origin encourages the increase of animal production worldwide, especially in developing countries. Simultaneously, current farming practices often extensively use antimicrobials on animals, influencing bacterial AMR incidence. This study aims to evaluate the correlation between antimicrobial use (AMU) in farmed animals and the detection of AMR infections in humans, the effects of enforcing laws in animal farming in a country on AMR situation in the neighbors, and the potential of AMR to spread from one country to another. Using data from 30 largest animal-producing countries in different regions of the world, between 2010 and 2020, and a Spatial Durbin Model (SDM), we found that AMU in farmed animals increases AMR in humans and there is a spatial dependence between countries regarding AMR spreading. Such findings indicate that a globally coordinated strategy regulating AMU on farmed animals may reduce AMR emergence and worldwide spreading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665205PMC
http://dx.doi.org/10.1016/j.onehlt.2023.100647DOI Listing

Publication Analysis

Top Keywords

farmed animals
20
amu farmed
12
amr
9
antimicrobial resistance
8
amr infections
8
infections humans
8
animals
6
farmed
5
humans
5
evaluating contribution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!