Generation of Mouse Primitive Endoderm Stem Cells.

Bio Protoc

Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo ward, Chiba, Japan.

Published: November 2023

The blastocysts consist of dozens of cells of three distinct lineages: epiblast (Epi), trophoblast (TB), and primitive endoderm (PrE). All embryonic and extraembryonic tissues are derived from Epi, TB, and PrE. Stem cell lines representing preimplantation Epi and TB have been established and are known as embryonic stem cells (ESCs) and trophoblast stem cells (TSCs). Extraembryonic endoderm cells (XENCs) constitute a cell line that has been established from PrE. Although in vivo, PrE gives rise to visceral endoderm (VE), parietal endoderm (PE), and marginal zone endoderm (MZE); XENCs, on blastocyst injection into chimeras, primarily contribute to the distal region of PE. Here, we provide a comprehensive protocol for the establishment of fully potent primitive endoderm stem cell (PrESC) lines. PrESCs are established and maintained on mouse embryonic fibroblast (MEF) feeder cells in a serum-free medium supplemented with fibroblast growth factor 4 (FGF4), heparin, CHIR99021, and platelet-derived growth factor-AA (PDGF-AA). PrESCs co-express markers indicative of pluripotency and endoderm lineage commitment, exhibiting characteristics akin to those of PrE. On transplantation of PrESCs into blastocysts, they demonstrate a high efficiency in contributing to VE, PE, and MZE. PrESCs serve as a valuable model for studying PrE, sharing similarities in gene expression profiles and differentiation potential. PrESCs constitute a pivotal cornerstone for in vitro analysis of early developmental mechanisms and for studies of embryo reconstitution in vitro, particularly in conjunction with ESCs and TSCs. Key features • Establishment and maintenance of primitive endoderm stem cell (PrESCs) capable of recapitulating the developmental prowess inherent to PrE. • Offering a source of PrE lineage for embryo-like organoid reconstitution studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665633PMC
http://dx.doi.org/10.21769/BioProtoc.4878DOI Listing

Publication Analysis

Top Keywords

primitive endoderm
16
endoderm stem
12
stem cells
12
stem cell
12
endoderm
9
pre
8
stem
6
cells
6
prescs
6
generation mouse
4

Similar Publications

Background: Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of neurological defects and craniofacial malformations associated with prenatal ethanol exposure. While there is growing evidence for a genetic component to FASD, little is known of the cellular mechanisms underlying these ethanol-sensitive loci in facial development. Endoderm morphogenesis to form lateral protrusions called pouches is one key mechanism in facial development.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.

View Article and Find Full Text PDF
Article Synopsis
  • The lower urinary tract, consisting of the bladder and urethra, develops from the cloaca, with the bladder forming from the urogenital sinus and the urethra extending into the genital tubercle.
  • Engineering a fully functional bladder lining is challenging, and the urethral epithelium's immune roles are under-researched, highlighting the need for a better understanding of the epithelial and mesenchymal interactions that drive development.
  • This study identified specific genes involved in bladder and urethra development in mice, revealing differences in gene expression patterns related to sex and offering insights for future regenerative therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!