Cardiac electrophysiology mapping and ablation are widely used to treat heart rhythm disorders such as atrial fibrillation (AF) and ventricular tachycardia (VT). Here, we describe an approach for rapid production of three dimensional (3D)-printed mapping devices derived from magnetic resonance imaging. The mapping devices are equipped with flexible electronic arrays that are shaped to match the epicardial contours of the atria and ventricle and allow for epicardial electrical mapping procedures. We validate that these flexible arrays provide high-resolution mapping of epicardial signals in vivo using porcine models of AF and myocardial infarction. Specifically, global coverage of the epicardial surface allows for mapping and ablation of myocardial substrate and the capture of premature ventricular complexes with precise spatial-temporal resolution. We further show, as proof-of-concept, the localization of sites of VT by means of beat-to-beat whole-chamber ventricular mapping of ex vivo Langendorff-perfused human hearts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658567PMC
http://dx.doi.org/10.1002/btm2.10575DOI Listing

Publication Analysis

Top Keywords

flexible arrays
8
mapping ablation
8
mapping devices
8
mapping
7
electrophysiological mapping
4
mapping epicardium
4
epicardium 3d-printed
4
3d-printed flexible
4
arrays cardiac
4
cardiac electrophysiology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!