Azacitidine is a DNA methyltransferase inhibitor that has been used as a singular agent for the treatment of myelodysplastic syndrome-refractory anemia with excess blast-1 and -2 (MDS-RAEB I/II). However, recurrence and overall response rates following this treatment remain unsatisfactory. The combination of azacitidine and venetoclax has been used for the clinical treatment of a variety of hematological diseases due to the synergistic killing effect of the two drugs. Venetoclax is a BCL-2 inhibitor that can inhibit mitochondrial metabolism. In addition, azacitidine has been shown to reduce the levels of myeloid cell leukemia 1 (MCL-1) in acute myeloid leukemia cells. MCL-1 is an anti-apoptotic protein and a potential source of resistance to venetoclax. However, the mechanism underlying the effects of combined venetoclax and azacitidine treatment remains to be fully elucidated. In the present study, the molecular mechanism underlying the impact of venetoclax on the efficacy of azacitidine was investigated by examining its effects on cell cycle progression. SKM-1 cell lines were treated with 0-2 µM venetoclax and 0-4 µM azacytidine. After 24, 48 and 72 h of treatment, the impact of the drugs on the cell cycle was assessed by flow cytometry. Following drug treatment, changes in cellular glutamine metabolism pathways was analyzed using western blotting (ATF4, CHOP, ASCT2, IDH2 and RB), quantitative PCR ( and ), liquid chromatography-mass spectrometry (α-KG, succinate and glutathione) and ELISA (glutamine and glutaminase). Venetoclax was found to inhibit mitochondrial activity though the alanine-serine-cysteine transporter 2 (ASCT2) pathway, which decreased glutamine uptake. Furthermore, venetoclax partially antagonized the action of azacitidine through this ASCT2 pathway, which was reversed by glutathione (GSH) treatment. These results suggest that GSH treatment can potentiate the synergistic therapeutic effects of venetoclax and azacitidine combined treatment on a myelodysplastic syndrome-refractory anemia cell line at lower concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652243PMC
http://dx.doi.org/10.3892/etm.2023.12274DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
venetoclax
10
treatment
9
effects venetoclax
8
treatment myelodysplastic
8
myelodysplastic syndrome-refractory
8
syndrome-refractory anemia
8
inhibit mitochondrial
8
mechanism underlying
8
venetoclax azacitidine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!