The word disease is a common word and there are many diseases like heart disease, diabetes, breast cancer, COVID-19, and kidney disease that threaten humans. Data-mining methods are proving to be increasingly beneficial in the present day, especially in the field of medical applications; through the use of machine-learning methods, that are used to extract valuable information from healthcare data, which can then be used to predict and treat diseases early, reducing the risk of human life. Machine-learning techniques are useful especially in the field of health care in extracting information from healthcare data. These data are very much helpful in predicting the disease early and treating the patients to reduce the risk of human life. For classification and decision-making, data mining is very much suitable. In this paper, a comprehensive study on several diseases and diverse machine-learning approaches that are functional to predict those diseases and also the different datasets used in prediction and making decisions are discussed in detail. The drawbacks of the models from various research papers have been observed and reveal countless computational intelligence approaches. Naïve Bayes, logistic regression (LR), SVM, and random forest are able to produce the best accuracy. With further optimization algorithms like genetic algorithm, particle swarm optimization, and ant colony optimization combined with machine learning, better performance can be achieved in terms of accuracy, specificity, precision, recall, and specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671019PMC
http://dx.doi.org/10.4103/jehp.jehp_298_23DOI Listing

Publication Analysis

Top Keywords

computational intelligence
8
intelligence approaches
8
predicting disease
8
healthcare data
8
risk human
8
human life
8
disease
5
analysis computational
4
approaches predicting
4
disease severity
4

Similar Publications

Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.

JMIR Med Inform

January 2025

INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.

Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Background: The role that sleep patterns play in sepsis risk remains poorly understood.

Objectives: The objective was to evaluate the association between various sleep behaviours and the incidence of sepsis.

Methods: In this prospective cohort study, we analysed data from the UK Biobank (UKB).

View Article and Find Full Text PDF

Background: Although artificial intelligence (AI) has gained increasing attention for its potential future impact on clinical practice, medical education has struggled to stay ahead of the developing technology. The question of whether medical education is fully preparing trainees to adapt to potential changes from AI technology in clinical practice remains unanswered, and the influence of AI on medical students' career preferences remains unclear. Understanding the gap between students' interest in and knowledge of AI may help inform the medical curriculum structure.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.

Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!