Systemic iron chelation therapy has long been used for iron overload, providing a role in returning iron levels to proper homeostatic concentrations. Recently, topical iron chelation therapy has emerged as a potential strategy for treating skin damage. This narrative review explores the current status and future prospects of topical iron chelation therapy for treating ultraviolet (UV) and non-UV skin damage, as well as its potential application in wound healing. The review was conducted through a literature search across PubMed, Web of Science, and EMBASE databases, spanning publications from 1990 to 2023. The selection of articles was focused on primary research studies, either experimental or clinical, that explored the implications and formulations of topical iron chelators used alone or in conjunction with another therapeutic agent. The search strategy employed a combination of terms, including "topical iron chelation", "topical deferoxamine", "UV", "wound healing", "skin inflammation", "radiation-induced fibrosis", and "skin cancer". Relevant studies, including methods, intervention strategies, measured outcomes, and findings, are summarized. The review also considered the potential challenges in translating research findings into clinical practice. Results indicate that topical iron chelators, such as deferoxamine, are effective in mitigating UV-induced skin damage, reducing tumorigenesis, and decreasing oxidative damage. In addition, the use of these agents in radiation-induced fibrosis has been shown to significantly increase skin elasticity and reduce dermal fibrosis. Several studies also highlight the use of topical iron chelators in difficult-to-treat chronic wounds, such as diabetic neuropathic ulcers and sickle cell ulcers. In conclusion, topical iron chelation therapy represents a novel and promising approach for skin protection and wound healing. Its potential makes it a promising area of future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675985 | PMC |
http://dx.doi.org/10.7759/cureus.47720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!