An inherited neurodegenerative ailment called Huntington's disease (HD) of gradual physical impairment, cognitive decline, and psychiatric symptoms. It is brought on by a mutation of the HTT gene, which causes aberrant huntingtin protein buildup in neurons. This predominantly affects the striatum and cerebral cortex, where neuronal malfunction and eventual cell death follow. The quality index of life for both patients and their families is significantly impacted when symptoms first appear in mid-adulthood. An overview of the available therapies for HD is given in this article. Although HD has no known treatment options, there are several that try to lessen symptoms and reduce the disease's development. By lowering involuntary movements, pharmaceutical treatments like tetrabenazine and deutetrabenazine focus on motor symptoms. Antidepressants and antipsychotic medicines are also used to manage the mental and cognitive symptoms of HD. The investigation of prospective gene-based medicines is a result of research into disease-modifying medications. Reduced synthesis of mutant huntingtin protein is the goal of RNA interference (RNAi) strategies, which may halt the course of illness. Additionally, continuing research into Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 (CRISPR-Cas9) and other gene editing methods shows promise for reversing the genetic mutation that causes HD. Individuals with HD can benefit from non-pharmacological therapies such as physical therapy, speech therapy, and occupational therapy to increase their functional abilities and general well-being. Supportive treatment, psychiatric therapy, and caregiver support groups are also essential in addressing the difficult problems the illness presents. In conclusion, tremendous progress is being made in the domain of HD treatment, with an emphasis on symptom control, disease modification, and prospective gene-based therapeutics. Even though there has been significant improvement, more study is still required to provide better therapies and ultimately discover a solution for this debilitating condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664735 | PMC |
http://dx.doi.org/10.7759/cureus.47526 | DOI Listing |
J Neurol
January 2025
Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.
View Article and Find Full Text PDFJ Neurol
January 2025
Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia.
Background: Huntington's disease (HD) is a rare neurodegenerative disease that causes progressive cognitive, physical, and psychiatric symptoms. Computerised cognitive training (CCT) is a novel intervention that aims to improve and maintain cognitive functions through repeated practice. The effects of CCT have yet to be established in HD.
View Article and Find Full Text PDFFuture Cardiol
January 2025
Department of Cardiovascular Disease, Baylor Scott and White Medical Center - Temple, TX, USA.
Approximately 5-10% of patients with hypertension have secondary hypertension. We describe a case of secondary hypertension from bilateral renal artery stenosis (RAS): "Pickering syndrome." This is a case of hypertension secondary to bilateral RAS which provides an opportunity to review secondary hypertension with a specific focus on RAS, in terms of when to consider work up, causes of secondary hypertension, diagnostic testing, and treatment.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.
Huntington's disease (HD) is primarily caused by the aberrant aggregation of the N-terminal exon 1 fragment of mutant huntingtin protein (mHttex1) with expanded polyglutamine (polyQ) repeats in neurons. The first 17 amino acids of the N-terminus of Httex1 (N17 domain) immediately preceding the polyQ repeat domain are evolutionarily conserved across vertebrates and play multifaceted roles in the pathogenesis of HD. Due to its amphipathic helical properties, the N17 domain, both alone and when membrane-associated, promotes mHttEx1 aggregation.
View Article and Find Full Text PDFCureus
December 2024
Plastic and Reconstructive Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, USA.
Introduction: Burn injuries are associated with high mortality and morbidity, especially in the elderly population. Although burns are preventable, they account for the fourth most common cause of trauma worldwide. The majority of the mortality associated with burn victims is also seen in the elderly age group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!