Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of . With the completion of synthetic chromosome () described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome , we discovered that the minimal 118-bp sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the -proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667555 | PMC |
http://dx.doi.org/10.1016/j.xgen.2023.100437 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Max Planck Institute of Colloids and Interfaces, Biomolecular Systems, Am Mühlenberg 1, Research Campus Golm, 14476, Potsdam, GERMANY.
Klebsiella pneumoniae (KP) is a common opportunistic pathogen that emerged as a new critical threat to human health, due to its hypervirulence and widespread resistance against many antibiotics, including carbapenems. Alternative intervention strategies such as vaccines are not available. Cell-surface lipopolysaccharides (LPS) and capsular polysaccharides (CPS) are attractive targets for vaccine development.
View Article and Find Full Text PDFLangmuir
December 2024
Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
The behavior of single linear chains on a substrate is a well-studied area of polymer science. Herein, one of the most essential issues is the interaction of the chains with the substrate, which determines both macromolecular conformations near the substrate and adhesive properties of polymer materials. However, very little is known about the effect of macromolecular architecture on adhesion.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.
The nonheme iron(II) complexes containing a fluoride anion, Fe(BNPAO)(F) () and [Fe(BNPAOH)(F)(THF)](BF) (), were synthesized and structurally characterized. Addition of dioxygen to either or led to the formation of a fluoride-bridged, dinuclear iron(III) complex [Fe(BNPAO)(F)(μ-F)] (), which was characterized by single-crystal X-ray diffraction, H NMR, and elemental analysis. An iron(II)(iodide) complex, Fe(BNPAO)(I) (), was prepared and reacted with O to give the mononuclear complex -Fe(BNPAO)(OH)(I) ().
View Article and Find Full Text PDFStem Cells Transl Med
December 2024
Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.
The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!