The K channel blocker 4-aminopyridine (4AP) has been extensively used to investigate the mechanisms underlying neuronal network synchronization in both and animal models of focal epilepsy. 4AP-induced effects are paralleled by an increase in both excitatory and inhibitory neurotransmitter release, but the mechanisms of action of 4AP on neuronal networks remain unclear. By employing simultaneous whole-cell patch clamp and field potential recordings from hippocampal CA3/4 pyramidal layer of acute brain slices obtained from mice (n = 30), we found that the appearance of epileptiform discharges induced by 4AP (100 μM) is consistently preceded by the transient recurrence of presumptive GABA outward currents, which are not mirrored by any field activity. These GABA outward currents still occurred during application of ionotropic glutamatergic antagonists (n = 12 cells) but were blocked by the GABA receptor antagonist CGP55845 (n = 7). Our findings show that the transient occurrence of distinct GABA outward currents precedes the appearance of 4AP-induced neuronal network synchronization leading to epileptiform activity in the rodent hippocampus .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663127 | PMC |
http://dx.doi.org/10.1016/j.crneur.2023.100117 | DOI Listing |
Cureus
December 2024
Department of General Surgery, General Medicine Practice Program and Surgery, Batterjee Medical College, Jeddah, SAU.
While the physical manifestations of brain tumors are well-documented, their impact on the emotional and psychological landscape of patients is of equal importance. Patients frequently experience a range of challenges from depression, apathy, and increased aggression to personality changes. The complexity of these changes and their effects on emotional functioning are shaped by tumor characteristics, including location, growth rate, and the corresponding hormonal imbalances.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
A study is presented of a method for creating an acoustic flow sensor that is generally compatible with current silicon microfabrication processes. An aim of this effort is to obtain a design consisting of a minimal departure from the existing designs employed in mass-produced silicon microphones. Because the primary component in all of these microphones is the cavity behind the pressure-sensing diaphragm, we begin with a study of the acoustic particle velocity within a cavity in a planar surface.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China.
Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy.
Background: Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells.
View Article and Find Full Text PDFJ Korean Med Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
Background: The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!