Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661353 | PMC |
http://dx.doi.org/10.1002/mco2.418 | DOI Listing |
J Neuroimaging
January 2025
Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
Background And Purpose: We investigated the relationship between serotonergic and dopaminergic specific binding transporter ratios (SBRs) over 4 years in Parkinson's disease (PD) patients. We assessed serotonergic innervation's potential compensatory role for dopaminergic denervation, association with PD symptoms, and involvement in the development of levodopa-induced dyskinesia (LID).
Methods: SBRs of the midbrain and striatum were evaluated from [I-123] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane SPECT images at baseline and after 4 years.
J Gastrointest Cancer
January 2025
Department of Radiotherapy and Radiation Oncology, Jena University Hospital, 07747, Jena, Germany.
Purpose: Synchronous esophageal (EC) and rectal carcinoma (RC) is a rare and challenging condition, particularly in curative-intended treatment. Especially locally advanced tumors may not be suitable for primary resection and require individual multimodal treatment. This review examines curative-intended management of synchronous EC and RC.
View Article and Find Full Text PDFDermatol Ther (Heidelb)
January 2025
Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.
Introduction: Psoriasis is characterized by aberrant keratinocyte activity and immune cell infiltration, driven by immune-mediated pathways. MicroRNAs (miRNAs) play crucial roles in regulating these processes, offering insights into disease mechanisms and therapeutic targets.
Objectives: This study aimed to investigate changes in circulating miRNAs in psoriasis patients undergoing risankizumab therapy, an anti-IL-23 monoclonal antibody, to understand its impact on disease pathogenesis and treatment response.
Int J Colorectal Dis
January 2025
Department of Surgery, Japan Community Healthcare Organization Tokuyama Central Hospital, 1-1 Koda-Cho, Shunan, Yamaguchi, 745-0822, Japan.
Purpose: We aimed to identify the risk factors for severe neutropenia in the early phase of trifluridine-tipiracil (FTD/TPI) treatment, and their impact on overall survival (OS).
Methods: This single-center retrospective study included patients with unresectable metastatic colorectal cancer who were treated with FTD/TPI. The primary endpoint was OS, and the secondary endpoint was severe neutropenia during the first and second cycles of FTD/TPI.
Invest New Drugs
January 2025
Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, China.
Gliomas are a heterogeneous type of central nervous system tumor. The etiology of glioma formation remains elusive, with approximately 5% of gliomas being familial, underscoring the significance of understanding genetic susceptibility in glioma development. In this study, a dual germline PTCH2 mutation [Ser391*, Leu104Pro] was identified in a family with a history of glioma, and sequencing data from WES/SimcereDx Neuro-Onco 360 including 910 Chinese patients with glioma and 1666 patients with solid tumors were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!