Restoration advocates for the use of local seed in restoration, but theory suggests that diverse seed sources may enhance genetic diversity and longer term evolutionary potential within restored communities. However, few empirical studies have evaluated whether species and genetic diversity within species impacts plant community composition following restoration. The goal of this research is to compare the effects of single and multi-sourced seed mix treatments on plant community diversity following restoration. Species establishment, abundance, and diversity were compared following two restoration seed mix treatments created to include 14 species commonly used in grassland restoration. We compared the application of seed mixes designed using a single population per species with those containing five populations per species across sites in Minnesota and South Dakota, United States. Early plant establishment and richness mostly reflected non-seeded species across both sites, although seeded species established at a slightly higher rate in year two following restoration. At the South Dakota site, community composition largely reflected changes associated with establishment across the growing season as opposed to seed mix treatment. This contrasted with the Minnesota site, where community composition appeared to be strongly influenced by seed mix treatment. While there is some evidence seed mix treatment may be influencing the emergent community across sites, spatial heterogeneity across the Minnesota restoration site likely influenced diversity in early emergence over that of seed mix treatment. Indeed, varying land-use history across both sites likely contributed to differences in species composition observed at this early stage of the restoration. This suggests that seed mix treatment may have limited impact on early post-restoration emergence diversity relative to the importance of land-use history. However, future monitoring will be needed to evaluate whether the impact of seed mix treatment on community composition changes over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663101PMC
http://dx.doi.org/10.1002/ece3.10756DOI Listing

Publication Analysis

Top Keywords

seed mix
32
mix treatment
24
community composition
16
seed
13
restoration
10
species
9
diversity early
8
genetic diversity
8
plant community
8
mix
8

Similar Publications

Rhizobacteria and silicon modulate defense, oxidative stress, and suppress blast disease in upland rice plants in low phosphorus soils under field conditions.

Planta

December 2024

Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz e Feijão), Santo Antônio de Goiás, Goiás, 75375-000, Brazil.

Rhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants. Association of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions.

View Article and Find Full Text PDF

Barley (Hordeum vulgare) is widely used in the production of beer and distilled beverages, generating a nutrient-rich by-product known as brewer's spent grain (BSG). This study investigates the potential of brewer's spent grain flour (BSGF) as a functional ingredient to enhance the nutritional profile of bakery products, specifically chocolate cakes, while contributing to waste reduction in the food industry. The effects of partially substituting wheat flour with BSGF at 40% and 60% levels were assessed.

View Article and Find Full Text PDF

Soybean Hulls and White Oat Grains in Steer Finishing.

An Acad Bras Cienc

November 2024

Universidade Federal de Santa Maria, Centro de Ciências Rurais, Departamento de Ciência dos Alimentos, Avenida Roraima, 1000, Bairro Camobi, 97105-900 Santa Maria, RS, Brazil.

This study aimed to investigate the feasibility of using ground soybean hulls and white oat grains to finish steers reared exclusively on concentrated feed. We used 33 steers, predominantly of Charolais or Nellore breeds, and randomly assigned the animals to the treatments, blocking them according to genetic predominance. The diets were isonitrogenous, and the treatments consisted of soybean hulls, white oats, and mix these in equal parts, supplemented with calcitic limestone and a protein nucleus.

View Article and Find Full Text PDF

First Report of Diplodia Shoot Blight and Canker Disease Caused by on Ponderosa Pine in Colorado, USA.

Plant Dis

November 2024

Colorado State University, Department of Agricultural Biology, 1177 Campus Delivery, Fort Collins, Colorado, United States, 80523;

Article Synopsis
  • Diplodia shoot blight and canker disease (DSB) is caused by the fungal pathogen Diplodia sapinea and primarily affects 2-3 needled pines, such as ponderosa pine, resulting in various symptoms including necrotic needles, cankers, and dieback.
  • The pathogen can exist without visible symptoms in trees, making it difficult to detect, and outbreaks are more common in stressed environments like nurseries and seed orchards.
  • Although D. sapinea has not been previously reported in Colorado, studies confirmed its presence and pathogenicity after observing symptoms in ponderosa pines in Wyoming in 2018 and discovering symptomatic trees in Colorado in 2021.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!