Common bean ( L.) is the second most important source of dietary protein and the third most important source of calories in Africa, especially for the poor. In East Africa, drought is an important constraint to bean production. Therefore, breeding programs in East Africa have been trying to develop drought resistant varieties of common bean. To do this, breeders need information about seasonal drought stress patterns including their onset, intensity, and duration in the target area of the breeding program, so that they can mimic this pattern during field trials. Using the Decision Support for Agrotechnology Transfer (DSSAT) v4.7 model together with historical and future (Coupled Model Inter-comparison Project 6, CMIP6) climate data, this study categorized Ethiopia, Tanzania, and Uganda into different target population of environments (TPEs) based on historical and future seasonal drought stress patterns. We find that stress-free conditions generally dominate across the three countries under historical conditions (50-80% frequency). These conditions are projected to increase in frequency in Ethiopia by 2-10% but the converse is true for Tanzania (2-8% reduction) and Uganda (17-20% reduction) by 2050 depending on the Shared Socioeconomic Pathway (SSP). Accordingly, by 2050, terminal drought stresses of various intensities (moderate, severe, extreme) are prevalent in 34% of Uganda, around a quarter of Ethiopia, and 40% of the bean growing environments in Tanzania. The TPEs identified in each country serve as a basis for prioritizing breeding activities in national programs. However, to optimize resource use in international breeding programs to develop genotypes that are resilient to future projected stress patterns, we argue that common bean breeding programs should focus primarily on identifying genotypes with tolerance to severe terminal drought, with co-benefits in relation to adaptation to moderate and extreme terminal drought. Little to no emphasis on heat stress is warranted by 2050s.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636599PMC
http://dx.doi.org/10.1016/j.agrformet.2023.109735DOI Listing

Publication Analysis

Top Keywords

common bean
16
seasonal drought
12
drought stress
12
east africa
12
breeding programs
12
stress patterns
12
terminal drought
12
drought
8
bean breeding
8
historical future
8

Similar Publications

Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.).

Food Chem

December 2024

Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:

Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.

View Article and Find Full Text PDF

The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

The traditional machine learning methods such as decision tree (DT), random forest (RF), and support vector machine (SVM) have low classification performance. This paper proposes an algorithm for the dry bean dataset and obesity levels dataset that can balance the minority class and the majority class and has a clustering function to improve the traditional machine learning classification accuracy and various performance indicators such as precision, recall, f1-score, and area under curve (AUC) for imbalanced data. The key idea is to use the advantages of borderline-synthetic minority oversampling technique (BLSMOTE) to generate new samples using samples on the boundary of minority class samples to reduce the impact of noise on model building, and the advantages of K-means clustering to divide data into different groups according to similarities or common features.

View Article and Find Full Text PDF

β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP).

View Article and Find Full Text PDF

An accurate IDMS-based method for absolute quantification of phytohemagglutinin, a major antinutritional component in common bean.

J Food Sci

December 2024

Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China.

Phytohemagglutinin (PHA), a natural tetramer comprising PHA-E and PHA-L subunits that preferentially bind to red and white blood cells, respectively, constitutes a significant antinutritional and allergenic factor in common bean seeds. The accurate measurement of PHA content is a prerequisite for ensuring food safety inspections and facilitating genetic improvements in common bean cultivars with reduced PHA levels. Currently, mainstream methods for PHA quantification involve hemagglutination assays and immunodetection, but these methods often require fresh animal blood and lack specificity and accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!