Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxygen storage and release is a foundational part of many key pathways in heterogeneous catalysis, such as the Mars-van Krevelen mechanism. However, direct measurement of oxygen storage capacity (OSC) is time-consuming and difficult to parallelise. To accelerate the discovery of stable high OSC rare-earth doped ceria-zirconia oxygen storage catalysts, a high-throughput robotic-based co-precipitation synthesis route was coupled with sequentially automated powder X-ray diffraction (PXRD), Raman and thermogravimetric analysis (TGA) characterisation of the resulting materials libraries. Automated extraction of data enabled rapid trend identification and provided a data set for the development of an OSC prediction model, investigating the significance of each extracted quantity towards OSC. The optimal OSC prediction model produced incorporated variables from only fast-to-measure analytical techniques and gave predicted values of OSC that agreed with experimental observations across an independent validation set. Those measured quantities that feature in the model emerge as proxies for OSC performance. The ability to predict the OSC of the materials accelerates the discovery of high-capacity oxygen storage materials and motivates the development of similar high-throughput workflows to identify candidate catalysts for other heterogeneous transformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646963 | PMC |
http://dx.doi.org/10.1039/d3sc03558a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!