Recombinant humanized collagen (rhCol) was an extracellular matrix (ECM)-inspired biomimetic biomaterial prepared by biosynthesis technology, which was considered non-allergenic and could possibly activate tissue regeneration. The influence of tag sequence on both structures and performances of rhCol type III (rhCol III) was investigated, and the effect of rhCol III on cell behaviors was evaluated and discussed using Schwann cells (SCs) as model that was critical in the repair process after peripheral nerve injury. The results demonstrated that the introduction of tag sequence would influence both advanced structures and properties of rhCol III, while rhCol III regulated SCs adhesion, spreading, migration and proliferation. Also, both nerve growth factor and brain-derived neurotrophic factor increased when exposed to rhCol III. As the downstream proteins of integrin-mediated cell adhesions, phosphorylation of focal adhesion kinase and expression of vinculin was up-regulated along with the promotion of SCs adhesion and migration. The current findings contributed to a better knowledge of the interactions between rhCol III and SCs, and further offered a theoretical and experimental foundation for the development of rhCol III-based medical devices and clinical management of peripheral nerve injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676520 | PMC |
http://dx.doi.org/10.1093/rb/rbad089 | DOI Listing |
Mater Today Bio
October 2024
Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
Ovarian cancer (OC) is one of the leading causes of death from malignancy in women and lacks safe and efficient treatment. The novel biomaterial, recombinant humanized collagen type III (rhCOLIII), has been reported to have various biological functions, but its role in OC is unclear. This study aimed to reveal the function and mechanism of action of rhCOLIII in OC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, China.
Excessive fibrotic scar formation during skin defect repair poses a formidable challenge, impeding the simultaneous acceleration of wound healing and prevention of scar formation and hindering the restoration of skin integrity and functionality. Drawing inspiration from the structural, compositional, and biological attributes of skin, we developed a hydrogel containing modified recombinant human collagen type III and thiolated hyaluronic acid to address the challenges of regenerating skin appendages and improving the recovery of skin functions after injury by reducing fibrotic scarring. The hydrogel displayed favorable biocompatibility, antioxidant properties, angiogenic potential, and fibroblast migration stimulation .
View Article and Find Full Text PDFSmall Methods
December 2024
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Chuanda-Jinbo Joint Research Center, Med-X Center for Materials, Sichuan University, Chengdu, 610064, P. R. China.
Myocardial infarction (MI) has emerged as the predominant cause of cardiovascular morbidity globally. The pathogenesis of MI unfolds as a progressive process encompassing three pivotal phases: inflammation, proliferation, and remodeling. Smart stimulus-responsive hydrogels have garnered considerable attention for their capacity to deliver therapeutic drugs precisely and controllably at the MI site.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
June 2024
Shanxi Medical University, Shanxi, China.
Atomization is a treatment method to make inhaled liquids into aerosols and transport them to target organs in the form of fog or smoke. It has the advantages of improving the bioavailability of drugs, being painless, and non-invasive, and is now widely used in the treatment of lung and oral lesions. Aerosol inhalation as the route of administration of therapeutic proteins holds significant promise due to its ability to achieve high bioavailability in non-invasive pathways.
View Article and Find Full Text PDFRegen Ther
December 2024
The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China.
The effective promotion of wound healing poses a substantial challenge for clinical treatment. Despite evidence supporting the role of extracellular vesicles (EVs) in this process, their therapeutic potential is currently restrict by challenges in targeting and maintaining them. The manufacturing process for rhCol III, or recombinant human collagen III, is stable, and the rejection rate is low.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!