Catalytic co-pyrolysis of coal and biomass can improve both solid waste utilization and high value-added product content to obtain higher quality oils, which is significant for the clean and efficient use of coal and the expansion of biomass resource utilization. This study focuses on improving the quality of tar and the content of light fractions by catalytic reforming of coal and biomass co-pyrolysis volatiles. Molybdenum-doped MFI-type molecular sieve catalysts (Mo-MFI) were successfully prepared by a hydrothermal method using TPAOH as a structure-directing agent. The synthesized Mo-MFI molecular sieves were then used in the catalytic reforming of volatile fractions from the co-pyrolysis of low-metamorphic coal and biomass. With the help of biomass and catalyst, the co-pyrolysis tar can increase the content of high-value-added products. It was found that the highest tar yield of 11.4% was achieved when 30 wt% of corn stover was added. The utilization of Mo-MFI catalysts leads to a significant increase of 126% in the light oil content of a blended sample tar consisting of 30 wt% corn stover. The catalyst was also highly selective for low-level phenols, increasing the phenol content in the co-pyrolysis tar by 133.8%, 112.2% for cresols, and 88.1% for xylenol. In addition, a possible reaction pathway for the conversion of hydrocarbons to PXC (phenol, cresol, and xylenol) was proposed based on the changes in the components of the tar product after the addition of the catalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658359PMC
http://dx.doi.org/10.1039/d3ra06925gDOI Listing

Publication Analysis

Top Keywords

coal biomass
16
co-pyrolysis coal
8
mo-mfi molecular
8
molecular sieves
8
sieves catalytic
8
catalytic reforming
8
co-pyrolysis tar
8
wt% corn
8
corn stover
8
co-pyrolysis
6

Similar Publications

Geographic heterogeneity of polycyclic aromatic hydrocarbons in Yangtze River sediments: Evidence from the longest river in Asia.

Environ Pollut

January 2025

The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

This work is the first comprehensive survey of the Yangtze River, covering its origin to the estuary mouth. It focuses on the geographical and industrial factors influencing the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments, along with their contamination levels, sources, and ecological risks. The total concentrations of PAHs ranged from 2.

View Article and Find Full Text PDF

Assessment of potential ecological risk by metals in Ilha Grande Bay (Southeast Brazil).

Mar Pollut Bull

January 2025

Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193 Aveiro, Portugal. Electronic address:

This study evaluates contamination and potential ecological risk in Ilha Grande Bay (BIG) in southeastern Brazil. To achieve these objectives, we analyzed physicochemical, sediment textural, and geochemical data from 134 stations distributed throughout the bay. The results reveal significant environmental degradation in the coastal areas of Paraty, Saco do Mamanguá, Angra dos Reis City, and Abraão Cove (at Ilha Grande island).

View Article and Find Full Text PDF

Current level, sources, and risk of human exposure to PAHs, PBDEs and PCBs in South American outdoor air: A critical review.

Environ Res

January 2025

Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:

This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.

View Article and Find Full Text PDF

Study on the reforming performance of liquid products from biomass staged gasification based on component analysis and simulation.

Bioresour Technol

January 2025

Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, PR China. Electronic address:

Biomass staged gasification technology (BSGT) divides the traditional gasification into medium-temperature devolatilization (MTD) stage, high-temperature gasification (HTG) stage and high-temperature reforming (HTR) stage. The present study conducted MTD and HTG experiments on corn stalks and focused on the effect of MTD at 200-550 °C on the reforming performance of BSGT liquid products through component analysis and simulation. The results demonstrate that the MTD temperature above 350 °C could prevent the participation of phenols and oxygen in HTG and HTR stages, respectively, thereby improving the reforming performance of BSGT liquid products and the quality of BSGT syngas.

View Article and Find Full Text PDF

The chemical looping co-gasification of nitrogen-containing algal biomass and coal could effectively realize the high-value utilization of gasification products, but the mechanism of conversion of nitrogen-containing pollutants is not clear. In this work, the effects of the different ratios of microalgae on the co-gasification process were first explored, and the results showed that the 40 % coal + 60 % microalgae blending had the best synergistic effect, with a comprehensive synergistic index (CSI) of 1.35 as the maximum value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!