This paper presents a mechanical analysis of the foundation of a temporary offshore platform using a temporary embedded eight-leg support structure. The model is simulated using the finite element simulation software MIDAS-3D, with the modified RANS equation and Forchheimer saturated resistance model used to control the fluid. The stress analysis principle of the structure is simplified by the pile group theory. The stability of the eight-legged supporting structure is investigated under different embedding depths, pile diameters, wave periods, and amplitudes of the main piles. The results show that the eight-legged supporting structure can intercept and divert water flow, eliminating the impact of the water flow on the main piles during large waves. Additionally, as the diameter of the structure increases under the same wave conditions, the influence of the base volume and surface curvature gradually increases, deteriorating the stress environment of the main pile and decreasing the supporting effect of the eight-legged support structure. Numerical calculations of the seabed rock foundation of the eight-leg supporting structure show that the shallow pile foundation undergoes significant deformation, while the eight-leg supporting structure is still supported by the dead weight of the main pile.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686482 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277353 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!