CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein). None of those significantly affected Cas9 activity, while Cas9 efficiently shielded DSBs and SSBs from their sensors. Poly(ADP-ribosyl)ation of Cas9 detected for poly(ADP-ribose) polymerase 2 had no apparent effect on the activity. In cellulo, Cas9-dependent gene editing was independent of poly(ADP-ribose) polymerase 1. Thus, Cas9 can be regarded as an enzyme mostly orthogonal to the natural regulation of human systems of DNA break sensing and repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686484PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294683PLOS

Publication Analysis

Top Keywords

polyadp-ribose polymerase
16
cas9
9
human systems
8
systems dna
8
dna break
8
break sensing
8
sensing repair
8
gene editing
8
cas9 activity
8
binding protein
8

Similar Publications

The pollution by heavy metals in coastal waters has gradually intensified due to industrial development. In this study, physiological responses of Ulva lactuca, one of the most common green seaweeds with important ecological and economic value in the global intertidal zone, to acute copper stress were investigated. Results showed that an increase in copper ions concentration significantly inhibited photosynthetic activity and inorganic nitrogen utilization by U.

View Article and Find Full Text PDF

Objective: We assessed real-world trends in the use of maintenance therapy [MT] (i.e., polyADP-ribose polymerase inhibitors (PARPi) and/or bevacizumab following platinum-based chemotherapy), among U.

View Article and Find Full Text PDF

Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death.

Biochim Biophys Acta Mol Cell Res

December 2024

Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Electronic address:

Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis.

View Article and Find Full Text PDF

Genomic loss of the transcriptional kinase occurs in ~6% of metastatic castration-resistant prostate cancers (mCRPC) and correlates with poor patient outcomes. Prior studies demonstrate that acute CDK12 loss confers a homologous recombination (HR) deficiency (HRd) phenotype via premature intronic polyadenylation (IPA) of key HR pathway genes, including However, mCRPC patients have not demonstrated benefit from therapies that exploit HRd such as inhibitors of polyADP ribose polymerase (PARP). Based on this discordance, we sought to test the hypothesis that an HRd phenotype is primarily a consequence of acute loss and the effect is greatly diminished in prostate cancers adapted to loss.

View Article and Find Full Text PDF

Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!