As a core chromatin-regulatory scaffolding protein, WDR5 mediates numerous protein-protein interactions (PPIs) with other partner oncoproteins. However, small-molecule inhibitors that block these PPIs exert limited cell-killing effects. Here, we report structure-activity relationship studies in pancreatic ductal adenocarcinoma (PDAC) cells that led to the discovery of several WDR5 proteolysis-targeting chimer (PROTAC) degraders, including (MS132), a highly potent and selective von Hippel-Lindau (VHL)-recruiting WDR5 degrader, which displayed positive binding cooperativity between WDR5 and VHL, effectively inhibited proliferation in PDAC cells, and was bioavailable in mice and , a cereblon (CRBN)-recruiting WDR5 degrader, which selectively degraded WDR5 over the CRBN neo-substrate IKZF1. Furthermore, by conducting site-directed mutagenesis studies, we determined that WDR5 K296, but not K32, was involved in the PROTAC-induced WDR5 degradation. Collectively, these studies resulted in a highly effective WDR5 degrader, which could be a potential therapeutic for pancreatic cancer and several potentially useful tool compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872723 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.3c01521 | DOI Listing |
Nat Chem Biol
January 2025
Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator-PP2A complex (INTAC), a global regulator of RNA polymerase II pause-release dynamics.
View Article and Find Full Text PDFNature
January 2025
Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.
View Article and Find Full Text PDFExpert Opin Ther Pat
January 2025
Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
Introduction: WDR5 is an epigenetic scaffolding protein that has attracted significant interest as an anti-cancer drug target, especially in MLL-rearranged leukemias. The most druggable 'WIN-site' on WDR5, which tethers WDR5 to chromatin, has been successfully targeted with multiple classes of exquisitely potent small-molecule protein-protein interaction inhibitors. Earlier progress has also been made on the development of WDR5 degraders and inhibitors at the 'WBM-site' on the opposite face of WDR5.
View Article and Find Full Text PDFSci Adv
December 2024
Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India.
Dysfunction of the centrosome, the major microtubule-organizing center of the cell, is implicated in microcephaly. Haploinsufficiency of mixed-lineage leukemia (MLL/KMT2A) protein causes Wiedemann-Steiner syndrome (WSS), a neurodevelopmental disorder associated with microcephaly. However, whether MLL has a function at the centrosome is not clear.
View Article and Find Full Text PDFElife
December 2024
Institute of Biochemistry, University of Kiel, Kiel, Germany.
The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!