We present in this paper a novel denoising training method to speed up DETR (DEtection TRansformer) training and offer a deepened understanding of the slow convergence issue of DETR-like methods. We show that the slow convergence results from the instability of bipartite graph matching which causes inconsistent optimization goals in early training stages. To address this issue, except for the Hungarian loss, our method additionally feeds GT bounding boxes with noises into the Transformer decoder and trains the model to reconstruct the original boxes, which effectively reduces the bipartite graph matching difficulty and leads to faster convergence. Our method is universal and can be easily plugged into any DETR-like method by adding dozens of lines of code to achieve a remarkable improvement. As a result, our DN-DETR results in a remarkable improvement ( +1.9AP) under the same setting and achieves 46.0 AP and 49.5 AP trained for 12 and 50 epochs with the ResNet-50 backbone. Compared with the baseline under the same setting, DN-DETR achieves comparable performance with 50% training epochs. We also demonstrate the effectiveness of denoising training in CNN-based detectors (Faster R-CNN), segmentation models (Mask2Former, Mask DINO), and more DETR-based models (DETR, Anchor DETR, Deformable DETR).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2023.3335410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!