Future sustainable materials based on designer biomolecules require control of the solution assembly, but also interfacial interactions. Alcohol treatments of protein materials are an accessible means to this, making understanding of the process at the molecular level of seminal importance. We focus here on the influence of ethanol on spidroins, the main proteins of silk. By large-scale atomistically detailed molecular dynamics (MD) simulations and interconnected experiments, we characterize the protein aggregation, secondary structure changes, molecular level origins of them, and solvation environment changes for the proteins, as induced by ethanol as a solvation additive. The MD and circular dichoroism (CD) findings jointly show that ethanol promotes ordered structure in the protein molecules, leading to an increase of helix content and turns but also increased aggregation, as revealed by dynamic light scattering (DLS) and light microscopy. The structural changes correlate at the molecular level with increased intramolecular hydrogen bonding. The simulations reveal that polar amino acids, such as glutamine and serine, are most influenced by ethanol, whereas glycine residues are most prone to be involved in the ethanol-induced secondary structure changes. Furthermore, ethanol engages in interactions with the hydrophobic alanine-rich regions of the spidroin, significantly decreasing the hydrophobic interactions of the protein with itself and its surroundings. The protein solutes also change the microstructure of water/ethanol mixtures, essentially decreasing the level of larger local clustering. Overall, the work presents a systematic characterization of ethanol effects on a widely used, common protein type, spidroins, and generalizes the findings to other intrinsically disordered proteins by pinpointing the general features of the response. The results can aid in designing effective alcohol treatments for proteins, but also enable design and tuning of protein material properties by a relatively controllable solvation handle, the addition of ethanol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716855 | PMC |
http://dx.doi.org/10.1021/acs.biomac.3c00637 | DOI Listing |
J Exp Bot
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.
View Article and Find Full Text PDFCurr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Urology, Affiliated Xi'an Peoples Hospital (Xi'an Fourth Hospital) of Northwest University, Xi'an, 710000, China.
Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!