Currently, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have no effective treatments. Drug repurposing offers a rapid method to meet therapeutic need for ALS and FTD. To identify therapeutic targets associated with ALS and FTD, Mendelian randomization (MR) analysis and colocalization were performed. Genetic instruments were based on transcriptomic and proteomic data for 422 actionable proteins targeted by approved drugs or clinical drug candidates. The publicly available ALS GWAS summary data (including a total of 20,806 ALS cases and 59,804 controls) and FTD GWAS summary data (including a total of 2154 patients with FTD and 4308 controls) were used. Using cis-expression quantitative trait loci and cis-protein quantitative trait loci genetic instruments, we identified several drug targets for repurposing (ALS: MARK3, false-discovery rate (FDR) = 0.043; LTBR, FDR = 0.068) (FTD: HLA-DRB1, FDR = 0.083; ADH5, FDR = 0.056). Our MR study analyzed the actionable druggable proteins and provided potential therapeutic targets for ALS and FTD. Future studies should further elucidate the underlying mechanism of corresponding drug targets in the pathogenesis of ALS and FTD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-023-03817-7DOI Listing

Publication Analysis

Top Keywords

als ftd
16
drug targets
12
mendelian randomization
8
amyotrophic lateral
8
lateral sclerosis
8
frontotemporal dementia
8
als
8
ftd
8
therapeutic targets
8
genetic instruments
8

Similar Publications

Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

An abnormal expansion of a GGGGCC (GC) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the GC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits.

View Article and Find Full Text PDF

The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!