Background: Brucellosis caused by B. melitensis is one of the most important common diseases between humans and livestock. Currently, live attenuated vaccines are used for this disease, which causes many problems, and unfortunately, there is no effective vaccine for human brucellosis. The aim of our research was to design a recombinant vaccine containing potential immunogenic epitopes against B. melitensis.
Methods: In this study, using immunoinformatics approaches, 3 antigens Omp31, Omp25, and Omp28 were identified and the amino acid sequence of the selected antigens was determined in NCBI. Signal peptides were predicted by SignaIP-5.0 server. To predict B-cell epitopes from ABCpred and Bcepred servers, to predict MHC-I epitopes from RANKPEP and SYFPEITHI servers, to predict MHC-II epitopes from RANKPEP and MHCPred servers, and to predict CTL epitopes were used from the CTLPred server. Potentially immunogenic final epitopes were joined by flexible linkers. Finally, allergenicity (AllerTOP 2.0 server), antigenicity (Vaxijen server), physicochemical properties (ProtParam server), solubility (Protein-sol server), secondary (PSIPRED and GRO4 servers) and tertiary structure (I-TASSER server), refinement (GalaxyWEB server), validation (ProSA-web, Molprobity, and ERRAT servers), and optimization of the codon sequence (JCat server) of the structure of the multi-epitope vaccine were analyzed.
Results: The analysis of immunoinformatics tools showed that the designed vaccine has high quality, acceptable physicochemical properties, and can induce humoral and cellular immune responses against B. melitensis bacteria. In addition, the high expression level of recombinant antigens in the E. coli host was observed through in silico simulation.
Conclusion: According to the results in silico, the designed vaccine can be a suitable candidate to fight brucellosis and in vitro and in vivo studies are needed to evaluate the research of this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686926 | PMC |
http://dx.doi.org/10.1186/s43141-023-00614-6 | DOI Listing |
Genomics Proteomics Bioinformatics
January 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.
View Article and Find Full Text PDFBiomedicines
January 2025
Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette-Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use of these therapies. : We evaluated killer-cell immunoglobulin-like receptors (KIRs) and HLA-I genotyping and the expression of NK cell receptors in circulating T and NK lymphocytes at diagnosis in 325 consecutive BC patients (151 treated with BCG and 174 treated with other therapies), as well as in 648 patients with other cancers and 973 healthy donors as controls.
View Article and Find Full Text PDFJ Clin Lab Anal
January 2025
Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Background: In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides.
Methods: Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz.
Mar Drugs
December 2024
Graduate Program in Biochemistry and Molecular Biology, Center of Biosciences, Federal University of Rio Grande do Norte-UFRN, Av. Sen. Salgado Filho, 3000, Natal 59078-900, Brazil.
Carrageenans have demonstrated enhanced antitumor activity upon depolymerization into disaccharides. However, the pharmacological viability of these disaccharides and their mechanisms of antitumor action remains to be fully elucidated. This study aimed to employ computational tools to investigate the pharmacological properties and molecular targets pertinent to cancer of the disaccharides derived from the primary carrageenans.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
December 2024
Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India.
Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!