Background: Definite treatment for glioma is not exist, and with increased drug resistance, more effort should be paid to identify new prognostic biomarkers and molecular targets for therapy for glioma patients.
Aim: The current study aimed to evaluate the immunohistochemical (IHC) expression of MTAP and A-Kinase Interacting Protein 1 (AKIP1) in astrocytoma and to investigate their association with the clinicopathological characters of these cases.
Methods: Totally 66 cases of astrocytoma patients involved in this study. Cases underwent tumor resection and tissue sections were stained with MTAP, AKIP1 and IDH1 by IHC and evaluated in different grades of astrocytoma and their association with survival and response to therapy was investigated.
Results: High AKIP1 expression was positively correlated with treatment resistance and progressive disease. Positive IDH and retained MTAP expressions had shown better treatment response rather than negative IDH and lost MTAP. High AKIP, negative IDH and loss of MTAP expressions were significantly associated with poor survival outcome.
Conclusion: Irrespective to grade and IDH status, the loss of MTAP immunoreactivity and high AKIP1 expression are predictive factors in astrocytoma, and they may be used as a biomarker for guiding astrocytoma management and prognosis surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772751 | PMC |
http://dx.doi.org/10.31557/APJCP.2023.24.11.3875 | DOI Listing |
J Med Chem
January 2025
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.
Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor.
View Article and Find Full Text PDFCells
December 2024
Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells.
View Article and Find Full Text PDFJ Thorac Oncol
December 2024
Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Introduction: Copy-number (CN) loss of chromosome 9p, or parts thereof, impair immune response and confer ICT resistance by direct elimination of immune-regulatory genes on this arm, notably IFNγ genes at 9p24.1, and type-I interferon (IFN-I) genes at 9p21.3.
View Article and Find Full Text PDFCancer Med
December 2024
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.
Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.
View Article and Find Full Text PDFJ Pathol Clin Res
January 2025
Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Homozygous 9p21 deletions usually result in a complete loss of S-methyl-5'-thioadenosine phosphorylase (MTAP) expression visualizable by immunohistochemistry (IHC). MTAP deficiency has been proposed as a marker for predicting targeted treatment response. A tissue microarray including 2,710 urothelial bladder carcinomas were analyzed for 9p21 deletion by fluorescence in situ hybridization and MTAP expression by IHC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!