Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202314228 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Shanghai Jiaotong University: Shanghai Jiao Tong University, School of Chemistry and Chemical Engineeringg, Dongchuan Road, Num 800, 200092, Shanghai, CHINA.
Circularly polarized luminescence (CPL) film attracted considerable attention in information storage and encryption, three-dimensional display, and chiral recognition. However, due to the limited molecular mobility within thin film, achieving a high asymmetry factor and non-contact modulation of CPL remain challenging. In this work, color-switchable homochiral CPL films with high luminescence asymmetry factor (glum~0.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
Aldol reactions are one of the most fundamental organic reactions involving the formation of carbon-carbon bonds that are commonly used in the synthesis of complex molecules through the condensation of an enol or enolate with a carbonyl group. The aldol reaction of thiohydantoin derivatives with benzaldehyde starts with hydrogen removal from C5 by lithium diisopropylamide (LDA) to form the enolate. Benzaldehyde adds to the enolate either at the less or more hindered site.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Chirality has garnered significant attention in the scientific community since its discovery by Louis Pasteur over a century ago. It has been showing a profound impact on chemical, biomedical, and materials sciences. Significant progress has been made in controlling molecular chirality, as evidenced by the several Nobel Prizes in chemistry awarded in this area, particularly for advancements in the asymmetric catalytic synthesis of molecules with central and axial chirality.
View Article and Find Full Text PDFOrg Lett
December 2024
Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
The development of chiral BODIPYs attracts remarkable interest due to their unique properties, structural diversity, and good photochemical stability, whereas achieving the construction of chiral BODIPYs maintains scarce. Herein, we present an enantioselective synthesis of axially chiral BODIPYs through Suzuki-Miyaura coupling. The newly synthesized chiral BODIPYs and the coassembly showed desirable photophysical properties, including high fluorescence quantum yields and intense CPL, both in solution and the solid state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Guangxi Normal University, School of Chemistry and Pharmaceutical Sciences, 15 Yucai Road, 541004, Guilin, CHINA.
Skeletal editing represents an attractive strategy for adding complexity to a given molecular scaffold in chemical synthesis. Isodesmic reactions provide a complementary skeletal editing approach for the redistribution of chemical bonds in chemical synthesis. However, catalytic enantioselective isodesmic reaction is extremely scarce and enantioselective isodesmic reaction to synthesize atropisomeric compounds is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!