The 5' adenosine monophosphate-activated protein kinase (AMPK) is an important skeletal muscle regulator implicated as a possible therapeutic target to ameliorate the local undesired deconditioning of disuse atrophy. However, the muscle-specific role of AMPK in regulating muscle function, fibrosis, and transcriptional reprogramming during physical disuse is unknown. The purpose of this study was to determine how the absence of both catalytic subunits of AMPK in skeletal muscle influences muscle force production, collagen deposition, and the transcriptional landscape. We generated skeletal muscle-specific tamoxifen-inducible AMPKα1/α2 knockout () mice that underwent 14 days of hindlimb unloading (HU) or remained ambulatory for 14 days (AMB). We found that during ambulatory conditions altered body weight and myofiber size, decreased muscle function, depleted glycogen stores and TBC1 domain family member 1 (TBC1D1) phosphorylation, increased collagen deposition, and altered transcriptional pathways. Primarily, pathways related to cellular senescence and mitochondrial biogenesis and function were influenced by the absence of AMPKα. The effects of persisted, but were not worsened, following hindlimb unloading. Together, we report that AMPKα is necessary to maintain skeletal muscle quality. We determined that skeletal muscle-specific AMPKα knockout (KO) mice display functional, fibrotic, and transcriptional alterations before and during muscle disuse atrophy. We also observed that AMPKα KO drives muscle fibrosis and pathways related to cellular senescence that continues during the hindlimb unloading period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193510PMC
http://dx.doi.org/10.1152/ajpendo.00261.2023DOI Listing

Publication Analysis

Top Keywords

skeletal muscle-specific
12
knockout mice
12
disuse atrophy
12
skeletal muscle
12
hindlimb unloading
12
muscle
9
ampkα1/α2 knockout
8
ampk skeletal
8
muscle function
8
collagen deposition
8

Similar Publications

Objectives: Objective of this work was to examine myomiR levels in plasma, skeletal muscle, and skeletal muscle cells of patients with idiopathic inflammatory myopathy (IIM), their interrelations with the disease-related clinical phenotypes and with the effects of the disease-modifying 6-month training-intervention.

Methods: Samples of vastus lateralis muscle (n = 12/13) and plasma (n = 20/21) were obtained from IIM patients and healthy controls, respectively. Muscle and plasma were obtained before and after a 6-month training-intervention in 7 patients.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, noncoding RNAs that play a critical role in regulating gene expression post-transcriptionally. They are involved in various developmental and physiological processes, and their dysregulation is linked to various diseases. Skeletal muscle-specific miRNAs, including miR-1, play a crucial role in the development and maintenance of skeletal muscle.

View Article and Find Full Text PDF

Pantothenate kinase 4 controls skeletal muscle substrate metabolism.

Nat Commun

January 2025

Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.

Article Synopsis
  • Metabolic flexibility in skeletal muscle is crucial for healthy glucose and lipid metabolism, and its dysfunction can lead to metabolic diseases.
  • Exercise improves metabolic flexibility and helps identify mechanisms that support metabolic health.
  • The study reveals that pantothenate kinase 4 (PanK4) is vital for muscle metabolism, as its deletion disrupts fatty acid oxidation and elevates harmful acetyl-CoA levels, which lead to glucose intolerance, while increasing PanK4 enhances glucose uptake and lowers acetyl-CoA.
View Article and Find Full Text PDF

The purpose of this study is to construct a muscle-specific synthetic promoter library, screen out muscle-specific promoters with high activity, analyze the relationship between element composition and activity of highly active promoters, and provide a theoretical basis for artificial synthesis of promoters. In this study, 19 promoter fragments derived from muscle-specific elements, conserved elements, and viral regulatory sequences were selected and randomLy connected to construct a muscle-specific synthetic promoter library. The luciferase plasmids pCMV-Luc and pSPs-Luc were constructed and transfected into the myoblast cell line C2C12.

View Article and Find Full Text PDF

Introduction And Aims: Mitochondrial myopathies are rare genetic disorders for which no effective treatment exists. We previously showed that the pharmacological cyclophilin inhibitor cyclosporine A (CsA) extends the lifespan of fast-twitch skeletal muscle-specific mitochondrial transcription factor A knockout (Tfam KO) mice, lacking the ability to transcribe mitochondrial DNA and displaying lethal mitochondrial myopathy. Our present aim was to assess whether the positive effect of CsA was associated with improved in vivo mitochondrial energy production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!