The use of biomaterials in the treatment of skin wounds has been steadily increasing over the last two decades. The key to the successful application of biomaterials in scar reduction is the up-to-date knowledge of the actors involved in accelerated healing and the cellular factors that can be implemented in bioinspired materials. Natural models of scarless healing such as oral mucosa, fetal skin and the skin of amphibians, fish, and reptiles are a great source of information. By investigating their microenvironments, cellular factors, and inflammatory self-regulatory systems, a general model of scarless healing can be defined. This review introduces the basic and current concepts of skin wound healing and focuses on providing a detailed overview of the main processes of accelerated healing without scarring. The article outlines the common features and key points that develop and promote scar-free healing. The tissues and healing processes of the selected natural models are described individually (tissue organization, structural components, ratios of cellular factors such as Collagen and transforming growth factor and their mechanisms of regulation of inflammation and scar overgrowth). A comparative work of each natural model concerning healing in human skin is included in the discussion. Finally, the patterns identified through the analysis of each model and their differences from normal healing are presented to facilitate the knowledge for the implementation of new treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEB.2023.0224 | DOI Listing |
Mater Today Bio
February 2025
Department of Orthopedics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), NO.38, Wuyingshan Road, Tianqiao District, Jinan, 250031, China.
The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Burn care and treatment differ markedly from other types of wounds, as they are significantly more prone to infections and struggle to maintain fluid balance post-burn. Moreover, the limited self-healing abilities exacerbate the likelihood of scar formation, further complicating the recovery process. To tackle these issues, an asymmetric wound dressing comprising a quercetin-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB@Qu) hydrophilic layer and a zinc oxide nanoparticle-loaded, thermally treated polyvinylidene fluoride (HPVDF@ZnO) hydrophobic layer is designed.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Anatomy and Cell Biology.
The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China. Electronic address:
Int J Biol Macromol
December 2024
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India. Electronic address:
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!