Multi-omic analyses are necessary to understand the complex biological processes taking place at the tissue and cell level, but also to make reliable predictions about, for example, disease outcome. Several linear methods exist that create a joint embedding using paired information per sample, but recently there has been a rise in the popularity of neural architectures that embed paired -omics into the same non-linear manifold. This work describes a head-to-head comparison of linear and non-linear joint embedding methods using both bulk and single-cell multi-modal datasets. We found that non-linear methods have a clear advantage with respect to linear ones for missing modality imputation. Performance comparisons in the downstream tasks of survival analysis for bulk tumor data and cell type classification for single-cell data lead to the following insights: First, concatenating the principal components of each modality is a competitive baseline and hard to beat if all modalities are available at test time. However, if we only have one modality available at test time, training a predictive model on the joint space of that modality can lead to performance improvements with respect to just using the unimodal principal components. Second, -omic profiles imputed by neural joint embedding methods are realistic enough to be used by a classifier trained on real data with limited performance drops. Taken together, our comparisons give hints to which joint embedding to use for which downstream task. Overall, product-of-experts performed well in most tasks and was reasonably fast, while early integration (concatenation) of modalities did quite poorly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685331PMC
http://dx.doi.org/10.1093/bib/bbad416DOI Listing

Publication Analysis

Top Keywords

joint embedding
20
embedding methods
12
comparison linear
8
linear non-linear
8
non-linear joint
8
methods bulk
8
bulk single-cell
8
principal components
8
test time
8
joint
6

Similar Publications

Lateral flow assay with automatic signal amplification based on delayed substrate release.

Talanta

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.

The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated.

View Article and Find Full Text PDF

Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.

View Article and Find Full Text PDF

Amidine-functionalized aggregation-induced emission luminogen and a 3D-printed digital sensor platform for ultrafast and visual detection of heparin.

Anal Chim Acta

February 2025

College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.

Background: Heparin is a widely used anticoagulant in clinic. However, improper dosing can increase the risk of thromboembolic events, potentially leading to life-threatening complications. Clinic monitoring of heparin is very important for its use safety.

View Article and Find Full Text PDF

A novel viral infection in a Captive Colony of pelagic red crabs (Pleuroncodes planipes) from California.

J Invertebr Pathol

January 2025

Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ 85921, United States.

Captive, pelagic red crabs (Pleuroncodes planipes) had shortened lifespans and cutaneous black spots. Histologically, epidermal and mesenchymal cells had 3-5 µm diameter intranuclear inclusions, necrosis, vacuolation, and/or hyperplasia. The remaining organs were histologically unremarkable.

View Article and Find Full Text PDF

Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!