Understanding the detection mechanism of hole defects in metal additive manufacturing (AM) components is of great significance for the detection of metal AM component defects using laser-induced breakdown spectroscopy (LIBS). In this work, the mapping relationship between the hole defects of metal AM components and the LIBS spectral signal was studied using the controlled variable method. The effect of hole defects mostly showed a suppression effect and peaked at a hole depth of 1.0 mm when the LIBS system was at its optimal excitation parameter. To explore the possible reasons behind the inhibitory effect of self-holes, the variation law of the plasma temperature with and without hole defects was further investigated. Our results showed that the plasma temperature change curve was similar to the spectral line intensity change trend. Finally, the linear relationship between the focal length effect and the hole effect, and the relationship between the constraint effect and the hole effect were studied. The minimum fitting between the constraint effect and the hole effect was 0.979. We believed that the inhibition of the hole effect was mainly caused by the absorption and loss of energy in the plasma during the process of plasma radiation and shock wave reflection from the hole wall. By studying the detection mechanism of hole defects in metal additive manufacturing components excited by LIBS and finding the effective characteristics of hole defects in metal AM components, it is helpful to achieve higher precision and higher sensitivity defect detection.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay01772aDOI Listing

Publication Analysis

Top Keywords

hole defects
24
defects metal
16
metal additive
12
additive manufacturing
12
manufacturing components
12
hole
12
spectral signal
8
laser-induced breakdown
8
breakdown spectroscopy
8
spectroscopy libs
8

Similar Publications

HOP-graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP-graphene, utilizing molecular dynamics simulations. The results revealed that Young's modulus of HOP-graphene in the armchair direction is 21.

View Article and Find Full Text PDF

Background: Severe metaphyseal comminution and sizable bone defect of the distal femur are high risks of fixation failure. To date, no exact magnitude of comminution and bone loss is determined as an indication for augmentation of fixation construct. The present study aimed to investigate the influence of metaphyseal gap width, working length, and screw distribution on the stability of the fixation construct.

View Article and Find Full Text PDF

Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD).

View Article and Find Full Text PDF

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).

View Article and Find Full Text PDF

The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!