A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maternal folic acid and vitamin B supplementation during medium to late gestation promotes fetal development via improving placental antioxidant capacity, angiogenesis and amino acid transport. | LitMetric

AI Article Synopsis

  • * Results showed that FV supplementation reduced intrauterine growth retardation, lowered homocysteine levels in umbilical cord serum, and increased placental vascularity and antioxidant capacity.
  • * The findings suggest that maternal FV intake during pregnancy enhances fetal development by activating key biological pathways and improving nutrient transport to the fetus.

Article Abstract

Background: Folic acid and vitamin B (FV), being B vitamins, not only facilitate the remethylation of homocysteine (Hcy) but also contribute to embryonic development. This study aimed to assess the impact of FV supplementation during late pregnancy on sows' reproductive performance, amino acid metabolism, placental angiogenesis, and related parameters. Twenty primiparous sows at day 60 of gestation were randomly allocated to two groups: a basal diet (CON) group and a group receiving a basal diet supplemented with folic acid at 20 ppm and vitamin B at 125 ppb.

Results: The findings revealed that dietary FV supplementation significantly reduced the incidence of intrauterine growth retardation compared to the CON group (P < 0.05). Furthermore, it led to a decrease in the Hcy levels in umbilical cord serum (P < 0.05) and activation of the placental mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway (P < 0.05). Additionally, FV supplementation lowered placental malondialdehyde levels (P < 0.05) and increased the expression of placental thioredoxin (P = 0.05). Moreover, maternal FV supplementation notably elevated placental vascular density (P < 0.05) and the expression of sodium-coupled neutral amino acid transporter 2 (SNAT2) (P < 0.05), as well as amino acid concentrations in umbilical cord blood (P < 0.05).

Conclusion: Maternal FV supplementation during medium to late gestation reduced Hcy levels in umbilical cord blood and positively impacted fetal development. This improvement was closely associated with increased placental antioxidant capacity and vascular density, as well as activation of the placental mTORC1-SNAT2 signaling pathway. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13171DOI Listing

Publication Analysis

Top Keywords

folic acid
12
acid vitamin
8
amino acid
8
basal diet
8
con group
8
acid
5
maternal folic
4
vitamin supplementation
4
supplementation medium
4
medium late
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!