Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Systemic lupus erythematosus (SLE) patients are at risk during the COVID-19 pandemic, yet the underlying molecular mechanisms remain incompletely understood. This study sought to analyze the potential molecular connections between COVID-19 and SLE, employing a bioinformatics approach to identify effective drugs for both conditions.
Methods: The data sets GSE100163 and GSE183071 were utilized to determine share differentially expressed genes (DEGs). These DEGs were later analyzed by various bioinformatic methods, including functional enrichment, protein-protein interaction (PPI) network analysis, regulatory network construction, and gene-drug interaction construction.
Results: A total of 50 common DEGs were found between COVID-19 and SLE. Gene ontology (GO) functional annotation revealed that "immune response," "innate immune response," "plasma membrane," and "protein binding" were most enriched in. Additionally, the pathways that were enriched include "Th1 and Th2 cell differentiation." The study identified 48 genes/nodes enriched with 292 edges in the PPI network, of which the top 10 hub genes were CD4, IL7R, CD3E, CD5, CD247, KLRB1, CD40LG, CD7, CR2, and GZMK. Furthermore, the study found 48 transcription factors and 8 microRNAs regulating these hub genes. Finally, four drugs namely ibalizumab (targeted to CD4), blinatumomab (targeted to CD3E), muromonab-CD3 (targeted to CD3E), and catumaxomab (targeted to CD3E) were found in gene-drug interaction.
Conclusion: Four possible drugs that targeted two specific genes, which may be beneficial for COVID-19 patients with SLE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659756 | PMC |
http://dx.doi.org/10.1002/iid3.1087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!