Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837378 | PMC |
http://dx.doi.org/10.1002/advs.202303088 | DOI Listing |
Therapie
December 2024
VIM Suresnes, UMR_0892, hôpital Foch, université Paris-Saclay, 92150 Suresnes, France.
Over the past decade, new in vitro biological models have emerged which can reproduce certain characteristics of human physiology and pathologies. From organoids to organs-on-chips, these new technologies are currently revolutionizing the entire chain of research and development in pharmacology. All stakeholders are thus involved, from academic laboratories to pharmaceutical companies, start-ups, and assessment agencies.
View Article and Find Full Text PDFAssay Drug Dev Technol
January 2025
Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
Adv Sci (Weinh)
January 2025
CNRS, Univ. Bordeaux, CRPP, UMR 5031, Pessac, F-33600, France.
Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland.
'Organ-on-a-chip' technology is a promising and rapidly evolving model in biological research. This innovative microfluidic cell culture device was created using a microchip with continuously perfused chambers, populated by living cells arranged to replicate physiological processes at the tissue and organ levels. By consolidating multicellular structures, tissue-tissue interfaces, and physicochemical microenvironments, these microchips can replicate key organ functions.
View Article and Find Full Text PDFBioact Mater
March 2025
Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China.
The preclinical evaluation of drug-induced cardiotoxicity is critical for developing novel drug, helping to avoid drug wastage and post-marketing withdrawal. Although human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and the engineered heart organoid have been used for drug screening and mimicking disease models, they are always limited by the immaturity and lack of functionality of the cardiomyocytes. In this study, we constructed a Cardiomyocytes-on-a-Chip (CoC) that combines micro-grooves (MGs) and circulating mechanical stimulation to recapitulate the well-organized structure and stable beating of myocardial tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!