Novel insights into molecular and cellular aspects of delayed drug hypersensitivity reactions.

Expert Rev Clin Pharmacol

Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

Published: December 2023

Introduction: Delayed drug hypersensitivity reactions (DDHRs) represent a major health problem. They are unpredictable and can cause life-long disability or even death. The pathophysiology of DDHRs is complicated, multifactorial, and not well understood mainly due to the lack of validated animal models or in vitro systems. The role of the immune system is well demonstrated but its exact pathophysiology still a matter of debate.

Area Covered: This review summarizes the current understanding of DDHRs pathophysiology and abridges the available new evidence supporting each hypothesis. A comprehensive literature search for relevant publications was performed using PubMed, Google Scholar, and Medline databases with no date restrictions and focusing on the most recent 10 years.

Expert Opinion: Although multiple milestones have been achieved in our understanding of DDHRs pathophysiology as a result of the development of useful experimental models, many questions are yet to be fully answered. A deeper understanding of the mechanistic basis of DDHRs would not only facilitate the development of robust and reliable diagnostic assays for diagnosis, but would also inform therapy by providing specific target(s) for immunomodulation and potentially permit pre-therapeutic risk assessment to pursue the common goal of safe and effective drug therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17512433.2023.2289543DOI Listing

Publication Analysis

Top Keywords

delayed drug
8
drug hypersensitivity
8
hypersensitivity reactions
8
understanding ddhrs
8
ddhrs pathophysiology
8
ddhrs
5
novel insights
4
insights molecular
4
molecular cellular
4
cellular aspects
4

Similar Publications

Background And Objectives: Patients with multiple sclerosis (MS) may demonstrate better disease control when treatment is initiated on high-efficacy disease-modifying therapies (DMTs) from onset. This subgroup analysis assessed the long-term efficacy and safety profile of the high-efficacy DMT ocrelizumab (OCR) as first-line therapy for early-stage relapsing MS (RMS).

Methods: Post hoc exploratory analyses of efficacy and safety were performed in a subgroup of treatment-naive patients with RMS who received ≥1 dose of OCR in the multicenter OPERA I/II (NCT01247324/NCT01412333) studies.

View Article and Find Full Text PDF

HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the biological changes in rabbit corneas caused by two light-activated corneal stiffening methods: riboflavin with UVA and WST11 with NIR.
  • Differentially expressed proteins were identified following treatments, showing RF-D/UVA affected cell metabolism and keratocyte differentiation, while WST-D/NIR influenced extracellular matrix regulation.
  • The findings reveal a metabolic shift towards glycolysis in RF-D/UVA treated corneas compared to normal respiration in WST-D/NIR treated corneas, highlighting the distinct biological effects of each treatment.
View Article and Find Full Text PDF

Screening for pulmonary nodules (PN) using low-dose CT has proven effective in reducing lung cancer (LC) mortality. However, current treatments relying on follow-up and surgical excision fail to fully address clinical needs. Pathological angiogenesis plays a pivotal role in supplying oxygen necessary for the progression of PN to LC.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!