A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physiological sensing system integrated with vibration sensor and frequency gel dampers inspired by spider. | LitMetric

Physiological sensing system integrated with vibration sensor and frequency gel dampers inspired by spider.

Mater Horiz

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China.

Published: February 2024

AI Article Synopsis

  • Recent advances in bioelectronics are hindered by environmental noise and motion artifacts, prompting the development of a gel damper-integrated crack sensor inspired by spider anatomy.
  • The sensor features remarkable sensing abilities, such as a low detection limit of 0.05% strain, ultrafast response time of 3.4 ms, and durability exceeding 300,000 cycles, allowing for accurate vibration perception.
  • By combining the gel damper with the crack sensor, the device enhances signal quality and acquires cleaner vocal vibration signals, showcasing its potential for various applications in improving detection and stability.

Article Abstract

Recent advances in bioelectronics in mechanical and electrophysiological signal detection are remarkable, but there are still limitations because they are inevitably affected by environmental noise and motion artifacts. Thus, we develop a gel damper-integrated crack sensor inspired by the vibration response of the viscoelastic cuticular pad and slit organs in a spider. Benefitting from the specific crack structure design, the sensor possesses excellent sensing behaviors, including a low detection limit (0.05% strain), ultrafast response ability (3.4 ms) and superior durability (>300 000 cycles). Such typical low-amplitude fast response properties allow the ability to accurately perceive vibration frequency and waveform. In addition, the gel damper exhibits frequency-dependent dynamic mechanical behavior that results in improved stability and reliability of signal acquisition by providing shock resistance and isolating external factors. They effectively attenuate external motion artifacts and low-frequency mechanical noise, resulting in cleaner and more reliable signal acquisition. When the gel damper is combined with the crack-based vibration sensor, the integrated sensor exhibits superior anti-interference capability and frequency selectivity, demonstrating its effectiveness in extracting genuine vocal vibration signals from raw voice recordings. The integration of damping materials with sensors offers an efficient approach to improving signal acquisition and signal quality in various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3mh01719bDOI Listing

Publication Analysis

Top Keywords

signal acquisition
12
vibration sensor
8
motion artifacts
8
gel damper
8
vibration
5
sensor
5
signal
5
physiological sensing
4
sensing system
4
system integrated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!