Phosphine periodic mesoporous organosilicas (R-P-PMO-TMS: R=Ph, tBu), which possess electron-donating alkyl substituents on the phosphorus atom, were synthesized using bifunctional compounds with alkoxysilyl- and phosphino groups, bis[3-(triethoxysilyl)propyl]phenylphosphine borane (1 a) and bis[3-(triethoxysilyl)propyl]-tert-butylphosphine borane (1 b). Immobilization of Pd(0) species was performed to give R-P-Pd-PMO-TMS: R=Ph (2 a), tBu (3 a), respectively. The Pd(0) immobilized 2 a and 3 a were applicable as catalysts for Suzuki-Miyaura cross-coupling reactions of aryl chlorides with phenylboronic acid. It was revealed that 3 a bearing more electron-donating tBu groups exhibited higher catalytic activity. Various functional groups including both electron withdrawing and donating substituents were compatible in the system. The recyclability of 3 a was examined to support its moderate utility for the recycle use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202303159 | DOI Listing |
Beilstein J Org Chem
December 2024
Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye.
Acenaphthylene-fused heteroarenes with a variety of five- and six-membered heterocycles such as thiophene, furan, benzofuran, pyrazole, pyridine and pyrimidine were synthesized via an efficient Pd-catalyzed reaction cascade in good to high yields (45-90%). This cascade involves an initial Suzuki-Miyaura cross-coupling reaction between 1,8-dihalonaphthalenes and heteroarylboronic acids or esters, followed by an intramolecular C-H arylation under the same conditions to yield the final heterocyclic fluoranthene analogues. The method was further employed to access polyoxygenated benzo[]fluoranthenes, which are all structurally relevant to benzo[]fluoranthene-based fungal natural products.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States.
A regiodivergent palladium-catalyzed Suzuki-Miyaura reaction has been successfully implemented to synthesize (-)-lyngbyatoxin, (-)-teleocidin A2, and (-)-7-geranylindolactam V. This ligand-controlled cross-coupling strategy allowed for the direct preparation of these natural products from a single advanced synthetic intermediate, providing the shortest reported route to each compound. Subsequent studies in cancer cell lines were conducted to explore the chemotherapeutic applications of these natural products.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
Heliyon
December 2024
Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC.
View Article and Find Full Text PDFSynthesis (Stuttg)
January 2024
Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, USA.
alkaloid complanadine A, isolated by Kobayashi et al. in 2000, is a complex and unsymmetrical dimer of lycodine. Biologically, it is a novel and promising lead compound for the development of new treatment for neurodegenerative disorders and persistent pain management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!