AI Article Synopsis

  • Researchers synthesized new phosphine-based mesoporous organosilicas with electron-donating alkyl groups on phosphorus using bifunctional compounds.
  • The synthesized materials were used to immobilize palladium (Pd) species, resulting in effective catalysts for Suzuki-Miyaura cross-coupling reactions between aryl chlorides and phenylboronic acid.
  • The catalyst with tert-butyl groups (3 a) showed greater catalytic activity and compatibility with various functional groups, and its recyclability was tested, demonstrating moderate effectiveness for reuse.

Article Abstract

Phosphine periodic mesoporous organosilicas (R-P-PMO-TMS: R=Ph, tBu), which possess electron-donating alkyl substituents on the phosphorus atom, were synthesized using bifunctional compounds with alkoxysilyl- and phosphino groups, bis[3-(triethoxysilyl)propyl]phenylphosphine borane (1 a) and bis[3-(triethoxysilyl)propyl]-tert-butylphosphine borane (1 b). Immobilization of Pd(0) species was performed to give R-P-Pd-PMO-TMS: R=Ph (2 a), tBu (3 a), respectively. The Pd(0) immobilized 2 a and 3 a were applicable as catalysts for Suzuki-Miyaura cross-coupling reactions of aryl chlorides with phenylboronic acid. It was revealed that 3 a bearing more electron-donating tBu groups exhibited higher catalytic activity. Various functional groups including both electron withdrawing and donating substituents were compatible in the system. The recyclability of 3 a was examined to support its moderate utility for the recycle use.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202303159DOI Listing

Publication Analysis

Top Keywords

suzuki-miyaura cross-coupling
8
phosphine periodic
8
periodic mesoporous
8
cross-coupling reaction
4
reaction palladium
4
palladium catalysts
4
catalysts supported
4
supported phosphine
4
mesoporous organosilica
4
organosilica phosphine
4

Similar Publications

Acenaphthylene-fused heteroarenes with a variety of five- and six-membered heterocycles such as thiophene, furan, benzofuran, pyrazole, pyridine and pyrimidine were synthesized via an efficient Pd-catalyzed reaction cascade in good to high yields (45-90%). This cascade involves an initial Suzuki-Miyaura cross-coupling reaction between 1,8-dihalonaphthalenes and heteroarylboronic acids or esters, followed by an intramolecular C-H arylation under the same conditions to yield the final heterocyclic fluoranthene analogues. The method was further employed to access polyoxygenated benzo[]fluoranthenes, which are all structurally relevant to benzo[]fluoranthene-based fungal natural products.

View Article and Find Full Text PDF

A regiodivergent palladium-catalyzed Suzuki-Miyaura reaction has been successfully implemented to synthesize (-)-lyngbyatoxin, (-)-teleocidin A2, and (-)-7-geranylindolactam V. This ligand-controlled cross-coupling strategy allowed for the direct preparation of these natural products from a single advanced synthetic intermediate, providing the shortest reported route to each compound. Subsequent studies in cancer cell lines were conducted to explore the chemotherapeutic applications of these natural products.

View Article and Find Full Text PDF

Optically active cofacial ABCD-Pt(II)-porphyrin dimer exhibits bright circularly polarized phosphorescence.

Chem Commun (Camb)

December 2024

Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.

Article Synopsis
  • The synthesis of a chiral cofacial ABCD-Pt(II)-porphyrin dimer was successfully completed using a Pt-templated method followed by a Suzuki-Miyaura cross-coupling process.
  • The resulting enantiomers showcased bright red circularly polarized phosphorescence.
  • The phosphorescence had a high value of over 10 M cm, indicating strong optical properties.
View Article and Find Full Text PDF

Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC.

View Article and Find Full Text PDF

Concise Total Synthesis of Complanadine A Enabled by Pyrrole-to-Pyridine Molecular Editing.

Synthesis (Stuttg)

January 2024

Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, USA.

alkaloid complanadine A, isolated by Kobayashi et al. in 2000, is a complex and unsymmetrical dimer of lycodine. Biologically, it is a novel and promising lead compound for the development of new treatment for neurodegenerative disorders and persistent pain management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!