Objective: In patients with Dravet syndrome (DS), fenfluramine reduced convulsive seizure frequency and provided clinical benefit in nonseizure endpoints (e.g., executive function, survival). In zebrafish mutant scn1 DS models, chronic fenfluramine treatment preserved neuronal cytoarchitecture prior to seizure onset and prevented gliosis; here, we extend these findings to a mammalian model of DS (Scn1a mice) by evaluating the effects of fenfluramine on neuroinflammation (degenerated myelin, activated microglia) and survival.

Methods: Scn1a DS mice were treated subcutaneously once daily with fenfluramine (15 mg/kg) or vehicle from postnatal day (PND) 7 until 35-37. Sagittal brain sections were processed for immunohistochemistry using antibodies to degraded myelin basic protein (D-MBP) for degenerated myelin, or CD11b for activated (inflammatory) microglia; sections were scored semi-quantitatively. Apoptotic nuclei were quantified by TUNEL assay. Statistical significance was evaluated by 1-way ANOVA with post-hoc Dunnett's test (D-MBP, CD11b, and TUNEL) or Logrank Mantel-Cox (survival).

Results: Quantitation of D-MBP immunostaining per 0.1 mm unit area of the parietal cortex and hippocampus CA3 yielded significantly higher spheroidal and punctate myelin debris counts in vehicle-treated DS mice than in wild-type mice. Fenfluramine treatment in DS mice significantly reduced these counts. Activated CD11b + microglia were more abundant in DS mouse corpus callosum and hippocampus than in wild-type controls. Fenfluramine treatment of DS mice resulted in significantly fewer activated CD11b + microglia than vehicle-treated DS mice in these brain regions. TUNEL staining in corpus callosum was increased in DS mice relative to wild-type controls. Fenfluramine treatment in DS mice lowered TUNEL staining relative to vehicle-treated DS mice. By PND 35-37, 55% of control DS mice had died, compared with 24% of DS mice receiving fenfluramine treatment (P = 0.0291).

Significance: This is the first report of anti-neuroinflammation and pro-survival after fenfluramine treatment in a mammalian DS model. These results corroborate prior data in humans and animal models and suggest important pharmacological activities for fenfluramine beyond seizure reduction.

Plain Language Summary: Dravet syndrome is a severe epilepsy disorder that impairs learning and causes premature death. Clinical studies in patients with Dravet syndrome show that fenfluramine reduces convulsive seizures. Additional studies suggest that fenfluramine may have benefits beyond seizures, including promoting survival and improving control over emotions and behavior. Our study is the first to use a Dravet mouse model to investigate nonseizure outcomes of fenfluramine. Results showed that fenfluramine treatment of Dravet mice reduced neuroinflammation significantly more than saline treatment. Fenfluramine-treated Dravet mice also lived longer than saline-treated mice. These results support clinical observations that fenfluramine may have benefits beyond seizures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839300PMC
http://dx.doi.org/10.1002/epi4.12873DOI Listing

Publication Analysis

Top Keywords

fenfluramine treatment
28
fenfluramine
16
dravet syndrome
16
mice
15
vehicle-treated mice
12
treatment mice
12
mouse model
8
patients dravet
8
syndrome fenfluramine
8
treatment
8

Similar Publications

Objective: Fenfluramine (FFA), stiripentol (STP), and cannabidiol (CBD) are approved add-on therapies for seizures in Dravet syndrome (DS). We report on the long-term safety and health care resource utilization (HCRU) of patients with DS treated with FFA under an expanded access program (EAP).

Methods: A cohort of 124 patients received FFA for a median of 2.

View Article and Find Full Text PDF

Introduction: The seizures in Lennox-Gastaut syndrome are typically resistant to treatment. Seven antiseizure medications (ASMs) in the US (six in the UK/EU) are licensed for the treatment of seizures in LGS: lamotrigine, topiramate, rufinamide, clobazam, felbamate (not licensed in the UK/EU), cannabidiol and fenfluramine. Other options include neurostimulation, corpus callosotomy and dietary therapies, principally the ketogenic diet and its variants.

View Article and Find Full Text PDF

Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy (DEE) characterized by multiple types of drug-resistant seizures (which must include tonic seizures) with classical onset before 8 years (although some cases with later onset have also been described), abnormal electroencephalographic features, and cognitive and behavioral impairments. Management and treatment of LGS are challenging, due to associated comorbidities and the treatment resistance of seizures. A panel of five epileptologists reconvened to provide updated guidance and treatment algorithms for LGS, incorporating recent advancements in antiseizure medications (ASMs) and understanding of DEEs.

View Article and Find Full Text PDF

Fenfluramine is a medication originally approved for weight loss before being withdrawn for an association with the development of pulmonary arterial hypertension (PAH) and cardiac valvulopathy. Interest in fenfluramine at lower doses has re-emerged for treatment of drug-resistant epilepsy (DRE). Here, we present a case of a patient with Lennox-Gastaut Syndrome (LGS) treated with fenfluramine with development of PAH and tricuspid regurgitation that resolved upon discontinuation.

View Article and Find Full Text PDF

Since 2018, three new antiseizure medications (ASMs) received FDA approval for Dravet syndrome (DS) in the U.S: cannabidiol, stiripentol, and fenfluramine. Yet, the uptake of these ASMs in routine clinical practice is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!