Integrated silicon nitride polarizers play a critical role in the design of complex integrated devices such as filters, switches, and large Mach-Zehnder interferometer networks. These devices require precise control of both polarizations on a single circuit. In addition, polarizers are essential to accurately characterize these devices, primarily due to the low efficiency and polarization extinction ratio (PER) of the surface coupling gratings used in CMOS-compatible silicon nitride platforms for test-specific optical I/O. In this article, we present the design and experimental performance of six prototypes of TE-reflector/TM-pass polarizers specifically optimized for the C-band. These prototypes resemble subwavelength gratings with several additional intricate aspects. In particular, the longer prototypes feature two distinct regions, one representing non-intuitive tapers and the other showcasing a more distinct subwavelength grating. We achieve a high TM transmission efficiency of -0.28 dB along with a PER of 18.2 dB. These results are obtained with a device occupying an area as low as 11 µm × 2 µm, setting a new performance benchmark for compact polarizers compatible with standard silicon nitride platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.503124DOI Listing

Publication Analysis

Top Keywords

silicon nitride
16
nitride platforms
8
silicon
4
nitride tm-pass
4
tm-pass polarizer
4
polarizer inverse
4
inverse design
4
design integrated
4
integrated silicon
4
polarizers
4

Similar Publications

SPR Biosensor Based on Bilayer MoS for SARS-CoV-2 Sensing.

Biosensors (Basel)

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy.

The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

We demonstrate unprecedented control and enhancement of thermal radiation using subwavelength conical membranes of silicon nitride. Based on fluctuational electrodynamics, we find that the focusing of surface phonon-polaritons along these membranes enhances their far-field thermal conductance by three orders of magnitude over the blackbody limit. Our calculations reveal a non-monotonic dependence of the thermal conductance on membrane geometry, with a characteristic radiation plateau emerging at small front widths due to competing effects of the polariton focusing and radiative area.

View Article and Find Full Text PDF

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.

View Article and Find Full Text PDF

Nanosecond Nanothermometry in an Electron Microscope.

Nano Lett

January 2025

University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.

Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!