A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intelligent water perimeter security event recognition based on NAM-MAE and distributed optic fiber acoustic sensing system. | LitMetric

Distributed optical acoustic sensing (DAS) based on phase-sensitive optical time-domain reflectometry can realize the distributed monitoring of multi-point disturbances along an optical fiber, thus making it suitable for water perimeter security applications. However, owing to the complex environment and the production of various noises by the system, continuous and effective recognition of disturbance signals becomes difficult. In this study, we propose a Noise Adaptive Mask-Masked Autoencoders (NAM-MAE) algorithm based on the novel mask mode of a Masked Autoencoders (MAE) and applies it to the intelligent event recognition in DAS. In this method, fewer but more accurate features are fed into the deep learning model for recognition by directly shielding the noise. Taking the fading noise generated by the system as an example, data on water perimeter security events collected in DAS underwater acoustic experiments are used. The NAM-MAE is compared with other models. The results indicate higher training accuracy and higher convergence speed of NAM-MAE than other models. Further, the final test accuracy reaches 96.6134%. It can be demonstrated that the proposed method has feasibility and superiority.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.498554DOI Listing

Publication Analysis

Top Keywords

water perimeter
12
perimeter security
12
event recognition
8
acoustic sensing
8
intelligent water
4
security event
4
recognition
4
recognition based
4
nam-mae
4
based nam-mae
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!