Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Distributed optical acoustic sensing (DAS) based on phase-sensitive optical time-domain reflectometry can realize the distributed monitoring of multi-point disturbances along an optical fiber, thus making it suitable for water perimeter security applications. However, owing to the complex environment and the production of various noises by the system, continuous and effective recognition of disturbance signals becomes difficult. In this study, we propose a Noise Adaptive Mask-Masked Autoencoders (NAM-MAE) algorithm based on the novel mask mode of a Masked Autoencoders (MAE) and applies it to the intelligent event recognition in DAS. In this method, fewer but more accurate features are fed into the deep learning model for recognition by directly shielding the noise. Taking the fading noise generated by the system as an example, data on water perimeter security events collected in DAS underwater acoustic experiments are used. The NAM-MAE is compared with other models. The results indicate higher training accuracy and higher convergence speed of NAM-MAE than other models. Further, the final test accuracy reaches 96.6134%. It can be demonstrated that the proposed method has feasibility and superiority.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.498554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!