Natural materials' inherently weak nonlinear response demands the design of artificial substitutes to avoid optically large samples and complex phase-matching techniques. Silicon photonic crystals are promising artificial materials for this quest. Their nonlinear properties can be modulated optically, paving the way for applications ranging from ultrafast information processing to quantum technologies. A two-dimensional 15-μm-thick silicon photonic structure, comprising a hexagonal array of air holes traversing the slab's thickness, has been designed to support a guided resonance for the light with a wavelength of 4-μm. At the resonance conditions, a transverse mode of the light is strongly confined between the holes in the "veins" of the silicon component. Owing to the confinement, the structure exhibits a ratio of nonlinear to linear absorption coefficients threefold higher than the uniform silicon slab of the same thickness. A customised time-resolved Z-scan method with provisions to accommodate ultrafast pump-probe measurements was used to investigate and quantify the non-linear response. We show that optically pumping free charge carriers into the structure decouples the incoming light from the resonance and reduces the non-linear response. The time-resolved measurements suggest that the decoupling is a relatively long-lived effect on the scale comparable to the non-radiative recombination in the bulk material. Moreover, we demonstrate that the excited free carriers are not the source of the nonlinearity, as this property is determined by the structure design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.497371 | DOI Listing |
Nano Lett
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
Deep-ultraviolet (DUV) light is essential for applications including fabrication, molecular research, and biomedical imaging. Compact metalenses have the potential to drive further innovation in these fields, provided they utilize a material platform that is cost-effective, durable, and scalable. In this work, we present aluminum nitride (AlN) metalenses as an efficient solution for DUV applications.
View Article and Find Full Text PDFACS Nano
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.
View Article and Find Full Text PDFA silicon photonics optical phased array with a two-dimensional matrix of antennas is experimentally demonstrated in which the unitary antennas are optimized such that light can be emitted over a high fraction of the overall array surface. This design strategy can be used to obtain a low divergence emitted beam containing a significant fraction of the total emitted power, at the expense of a reduced beam steering range. This type of device can be suited to phase front correction in optical wireless communications systems.
View Article and Find Full Text PDFSignificant advancements in integrated photonics have enabled high-speed and energy efficient systems for various applications, from data communications and high-performance computing to medical diagnosis, sensing, and ranging. However, data storage in these systems has been dominated by electronic memories that in addition to signal conversion between optical and electrical domains, necessitates conversion between analog to digital domains and electrical data movement between processor and memory that reduce the speed and energy efficiency. To date, scalable optical memory with optical control has remained an open problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!