Background: The accumulation of myofibroblasts is the key pathological feature of pulmonary fibrosis (PF). Aberrant differentiation of lung-resident mesenchymal stem cells (LR-MSCs) has been identified as a critical source of myofibroblasts, but the molecular mechanisms underlying this process remain largely unknown. In recent years, N6-methyladenosine (m6A) RNA modification has been implicated in fibrosis development across diverse organs; however, its specific role in promoting the differentiation of LR-MSCs into myofibroblasts in PF is not well defined.

Methods: In this study, we examined the levels of m6A RNA methylation and the expression of its regulatory enzymes in both TGF-β1-treated LR-MSCs and fibrotic mouse lung tissues. The downstream target genes of m6A and their related pathways were identified according to a literature review, bioinformatic analysis and experimental verification. We also assessed the expression levels of myofibroblast markers in treated LR-MSCs and confirmed the involvement of the above-described pathway in the aberrant differentiation direction of LR-MSCs under TGF-β1 stimulation by overexpressing or knocking down key genes within the pathway.

Results: Our results revealed that METTL3-mediated m6A RNA methylation was significantly upregulated in both TGF-β1-treated LR-MSCs and fibrotic mouse lung tissues. This process directly led to the aberrant differentiation of LR-MSCs into myofibroblasts by targeting the miR-21/PTEN pathway. Moreover, inhibition of METTL3 or miR-21 and overexpression of PTEN could rescue this abnormal differentiation.

Conclusion: Our study demonstrated that m6A RNA methylation induced aberrant LR-MSC differentiation into myofibroblasts via the METTL3/miR-21/PTEN signaling pathway. We indicated a novel mechanism to promote PF progression. Targeting METTL3-mediated m6A RNA methylation and its downstream targets may present innovative therapeutic approaches for the prevention and treatment of PF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683095PMC
http://dx.doi.org/10.1186/s12931-023-02606-zDOI Listing

Publication Analysis

Top Keywords

m6a rna
24
rna methylation
20
mettl3-mediated m6a
12
aberrant differentiation
12
mesenchymal stem
8
stem cells
8
mir-21/pten pathway
8
differentiation lr-mscs
8
lr-mscs myofibroblasts
8
tgf-β1-treated lr-mscs
8

Similar Publications

RNA Modification and Digestive Tract Tumors: A Review.

Curr Med Chem

January 2025

Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.

Gastrointestinal tumors, including colorectal and liver cancer, are among the most prevalent and lethal solid tumors. These malignancies are characterized by worsening prognoses and increasing incidence rates. Traditional therapeutic approaches often prove ineffective.

View Article and Find Full Text PDF

Transcriptome-wide dynamics of mA methylation in ISKNV and Siniperca chuatsi cells infected with ISKNV.

BMC Genomics

January 2025

State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.

View Article and Find Full Text PDF

METTL3-Mediated m6A Modification of ISG15 mRNA Regulates Doxorubicin-Induced Endothelial Cell Apoptosis.

J Cell Mol Med

January 2025

Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.

N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Divergent roles of mA in orchestrating brown and white adipocyte transcriptomes and systemic metabolism.

Nat Commun

January 2025

Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.

N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!