Aims/hypothesis: Repeated exposures to insulin-induced hypoglycaemia in people with diabetes progressively impairs the counterregulatory response (CRR) that restores normoglycaemia. This defect is characterised by reduced secretion of glucagon and other counterregulatory hormones. Evidence indicates that glucose-responsive neurons located in the hypothalamus orchestrate the CRR. Here, we aimed to identify the changes in hypothalamic gene and protein expression that underlie impaired CRR in a mouse model of defective CRR.

Methods: High-fat-diet fed and low-dose streptozocin-treated C57BL/6N mice were exposed to one (acute hypoglycaemia [AH]) or multiple (recurrent hypoglycaemia [RH]) insulin-induced hypoglycaemic episodes and plasma glucagon levels were measured. Single-nuclei RNA-seq (snRNA-seq) data were obtained from the hypothalamus and cortex of mice exposed to AH and RH. Proteomic data were obtained from hypothalamic synaptosomal fractions.

Results: The final insulin injection resulted in similar plasma glucose levels in the RH group and AH groups, but glucagon secretion was significantly lower in the RH group (AH: 94.5±9.2 ng/l [n=33]; RH: 59.0±4.8 ng/l [n=37]; p<0.001). Analysis of snRNA-seq data revealed similar proportions of hypothalamic cell subpopulations in the AH- and RH-exposed mice. Changes in transcriptional profiles were found in all cell types analysed. In neurons from RH-exposed mice, we observed a significant decrease in expression of Avp, Pmch and Pcsk1n, and the most overexpressed gene was Kcnq1ot1, as compared with AH-exposed mice. Gene ontology analysis of differentially expressed genes (DEGs) indicated a coordinated decrease in many oxidative phosphorylation genes and reduced expression of vacuolar H- and Na/K-ATPases; these observations were in large part confirmed in the proteomic analysis of synaptosomal fractions. Compared with AH-exposed mice, oligodendrocytes from RH-exposed mice had major changes in gene expression that suggested reduced myelin formation. In astrocytes from RH-exposed mice, DEGs indicated reduced capacity for neurotransmitters scavenging in tripartite synapses as compared with astrocytes from AH-exposed mice. In addition, in neurons and astrocytes, multiple changes in gene expression suggested increased amyloid beta (Aβ) production and stability. The snRNA-seq analysis of the cortex showed that the adaptation to RH involved different biological processes from those seen in the hypothalamus.

Conclusions/interpretation: The present study provides a model of defective counterregulation in a mouse model of type 2 diabetes. It shows that repeated hypoglycaemic episodes induce multiple defects affecting all hypothalamic cell types and their interactions, indicative of impaired neuronal network signalling and dysegulated hypoglycaemia sensing, and displaying features of neurodegenerative diseases. It also shows that repeated hypoglycaemia leads to specific molecular adaptation in the hypothalamus when compared with the cortex.

Data Availability: The transcriptomic dataset is available via the GEO ( http://www.ncbi.nlm.nih.gov/geo/ ), using the accession no. GSE226277. The proteomic dataset is available via the ProteomeXchange data repository ( http://www.proteomexchange.org ), using the accession no. PXD040183.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789691PMC
http://dx.doi.org/10.1007/s00125-023-06043-xDOI Listing

Publication Analysis

Top Keywords

mouse model
8
recurrent hypoglycaemia
8
mice exposed
8
disrupted hypothalamic
4
hypothalamic transcriptomics
4
transcriptomics proteomics
4
proteomics mouse
4
model type
4
type diabetes
4
diabetes exposed
4

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!