The accuracy of three-dimensional (3D) facial skeletal surface models derived from radiographic volumes has not been extensively investigated yet. For this, ten human dry skulls were scanned with two Cone Beam Computed Tomography (CBCT) units, a CT unit, and a highly accurate optical surface scanner that provided the true reference models. Water-filled head shells were used for soft tissue simulation during radiographic imaging. The 3D surface models that were repeatedly segmented from the radiographic volumes through a single-threshold approach were used for reproducibility testing. Additionally, they were compared to the true reference model for trueness measurement. Comparisons were performed through 3D surface approximation techniques, using an iterative closest point algorithm. Differences between surface models were assessed through the calculation of mean absolute distances (MAD) between corresponding surfaces and through visual inspection of facial surface colour-coded distance maps. There was very high reproducibility (approximately 0.07 mm) and trueness (0.12 mm on average, with deviations extending locally to 0.5 mm), and no difference between radiographic scanners or settings. The present findings establish the validity of lower radiation CBCT imaging protocols at a similar level to the conventional CT images, when 3D surface models are required for the assessment of facial morphology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684569 | PMC |
http://dx.doi.org/10.1038/s41598-023-48320-0 | DOI Listing |
BMC Oral Health
January 2025
Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.
Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.
Sci Rep
January 2025
Department of Engineering, FH Campus Wien - University of Applied Sciences, Favoritenstraße 226, Vienna, 1100, Austria.
Meta-heuristic optimization algorithms are widely applied across various fields due to their intelligent behavior and fast convergence, but their use in optimizing engine behavior remains limited. This study addresses this gap by integrating the Design of Experiments-based Response Surface Methodology (RSM) with meta-heuristic optimization techniques to enhance engine performance and emissions characteristics using Tectona Grandi's biodiesel with Elaeocarpus Ganitrus as an additive. Advanced Machine Learning (ML) models, including Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), and Random Trees (RT), were employed for predictive analysis, with ANN outperforming RSM in accuracy.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration (FDA), Jefferson, AR, U.S.A.
Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA.
Understanding the mechanics linking cortical folding and brain connectivity is crucial for both healthy and abnormal brain development. Despite the importance of this relationship, existing models fail to explain how growing axon bundles navigate the stress field within a folding brain or how this bidirectional and dynamic interaction shapes the resulting surface morphologies and connectivity patterns. Here, we propose the concept of "axon reorientation" and formulate a mechanical model to uncover the dynamic multiscale mechanics of the linkages between cortical folding and connectivity development.
View Article and Find Full Text PDFNat Commun
January 2025
Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!