"Dogs" are connected to "cats" in our minds, and "backyard" to "outdoors." Does the structure of this semantic knowledge differ across people? Network-based approaches are a popular representational scheme for thinking about how relations between different concepts are organized. Recent research uses graph theoretic analyses to examine individual differences in semantic networks for simple concepts and how they relate to other higher-level cognitive processes, such as creativity. However, it remains ambiguous whether individual differences captured via network analyses reflect true differences in measures of the structure of semantic knowledge, or differences in how people strategically approach semantic relatedness tasks. To test this, we examine the reliability of local and global metrics of semantic networks for simple concepts across different semantic relatedness tasks. In four experiments, we find that both weighted and unweighted graph theoretic representations reliably capture individual differences in local measures of semantic networks (e.g., how related pot is to pan versus lion). In contrast, we find that metrics of global structural properties of semantic networks, such as the average clustering coefficient and shortest path length, are less robust across tasks and may not provide reliable individual difference measures of how people represent simple concepts. We discuss the implications of these results and offer recommendations for researchers who seek to apply graph theoretic analyses in the study of individual differences in semantic memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13428-023-02271-6 | DOI Listing |
Sci Rep
January 2025
EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
During the Covid-19 pandemic, the widespread use of social media platforms has facilitated the dissemination of information, fake news, and propaganda, serving as a vital source of self-reported symptoms related to Covid-19. Existing graph-based models, such as Graph Neural Networks (GNNs), have achieved notable success in Natural Language Processing (NLP). However, utilizing GNN-based models for propaganda detection remains challenging because of the challenges related to mining distinct word interactions and storing nonconsecutive and broad contextual data.
View Article and Find Full Text PDFMethodsX
June 2025
Assistant Professor, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, 600062, India.
Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Image Processing Laboratory, University of Valencia, Valencia, Spain.
In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Faculté des sciences infirmières, Université de Montréal, Succ. Centre-Ville, Montréal, C. P. 6128, H3C 3J7, Canada.
Background: Despite the importance of effective educational strategies to promote the transformation and articulation of clinical data while teaching and learning clinical reasoning, unanswered questions remain. Understanding how these cognitive operations can be observed and assessed is crucial, particularly considering the rapid growth of artificial intelligence and its integration into health education. A scoping review was conducted to map the literature regarding educational strategies to support transformation and articulation of clinical data, the learning tasks expected of students when exposed to these strategies and methods used to assess individuals' proficiency METHODS: Based on the Joanna Briggs Institute methodology, the authors searched 5 databases (CINAHL, MEDLINE, EMBASE, PsycINFO and Web of Science), ProQuest Dissertations & Theses electronic database and Google Scholar.
View Article and Find Full Text PDFComput Biol Med
January 2025
Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Future Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China. Electronic address:
Accurate segmentation and classification of glomeruli are fundamental to histopathology slide analysis in renal pathology, which helps to characterize individual kidney disease. Accurate segmentation of glomeruli of different types faces two main challenges compared to traditional primitives segmentation in computational image analysis. Limited by small kernel size, traditional convolutional neural networks could hardly understand the complete context information of different glomeruli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!