Dynamics of water-mediated interaction effects on the stability and transmission of Omicron.

Sci Rep

Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.

Published: November 2023

AI Article Synopsis

  • - The SARS-CoV-2 Omicron variant, along with its rapidly spreading sublineages and emerging hybrid variants, poses the risk of new future waves due to its ability to evolve quickly.
  • - This study analyzes the spike protein's interaction with the ACE2 receptor and highlights hydration forces and mutations in hydrophobic and hydrophilic residues, particularly in Delta and Omicron variants, which can influence viral behavior and evolution.
  • - The research underscores the significant role of hydration forces in protein dynamics and conformation, suggesting that understanding these interactions is crucial for developing effective COVID-19 treatment strategies.

Article Abstract

SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684572PMC
http://dx.doi.org/10.1038/s41598-023-48186-2DOI Listing

Publication Analysis

Top Keywords

hydration forces
12
omicron variant
8
hybrid variants
8
comparative analysis
8
delta omicron
8
omicron
6
dynamics
4
dynamics water-mediated
4
water-mediated interaction
4
interaction effects
4

Similar Publications

With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.

View Article and Find Full Text PDF

The influence of pectins and cellulose in the mechanical and adhesive properties of seed mucilage.

J Exp Bot

January 2025

Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany.

Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax).

View Article and Find Full Text PDF

The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Controlling of Applied Force and Cornea Displacement Estimation in Robotic Corneal Surgery With a Gripper Surgical Instrument.

Int J Med Robot

February 2025

Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, The Institute of Excellence in Robotic Surgery, Anglia Ruskin University, Chelmsford, UK.

Background: The human eye consists of highly sensitive, hydrated, and relatively thin tissues, making precise control and accurate force estimation crucial in robotic eye surgery. This paper introduces a novel control method and state observer designed for a gripper surgical instrument used on the external ocular surface during robotic eye surgery.

Methods: A novel state observer, operating in tandem with the controller, estimates the applied force.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!