In Alligator mississippiensis the spinal dura is surrounded by a venous sinus; pressure waves can propagate in the spinal venous blood, and these spinal venous pressures can be transmitted to the spinal cerebrospinal fluid (CSF). This study was designed to explore pressure transfer between the spinal venous blood and the spinal CSF. At rest the cardiac-related CSF pulsations are attenuated and delayed, while the ventilatory-related pulsations are amplified as they move from the spinal venous blood to the spinal CSF. Orthostatic gradients resulted in significant alterations of both cardiac- and ventilatory-related CSF pulsations. Manual lateral oscillations of the alligator's tail created pressure waves in the spinal CSF that propagated, with slight attenuation but no delay, to the cranial CSF. Oscillatory pressure pulsations in the spinal CSF and venous blood had little influence on the underlying ventilatory pulsations, though the same oscillatory pulsations reduced the ventilatory- and increased the cardiac-related pulsations in the cranial CSF. In Alligator the spinal venous anatomy creates a more complex pressure relationship between the venous and CSF systems than has been described in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684553 | PMC |
http://dx.doi.org/10.1038/s41598-023-48334-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!