Mammals walk in different directions, such as forward and backward. In human infants/adults and decerebrate cats, one leg can walk forward and the other backward simultaneously on a split-belt treadmill, termed hybrid or bidirectional locomotion. The purpose of the present study was to determine if spinal sensorimotor circuits generate hybrid locomotion and if so, how the limbs remain coordinated. We tested hybrid locomotion in 11 intact cats and in five following complete spinal thoracic transection (spinal cats) at three treadmill speeds with the hindlimbs moving forward, backward or bidirectionally. All intact cats generated hybrid locomotion with the forelimbs on a stationary platform. Four of five spinal cats generated hybrid locomotion, also with the forelimbs on a stationary platform, but required perineal stimulation. During hybrid locomotion, intact and spinal cats positioned their forward and backward moving hindlimbs caudal and rostral to the hip, respectively. The hindlimbs maintained consistent left-right out-of-phase alternation in the different stepping directions. Our results suggest that spinal locomotor networks generate hybrid locomotion by following certain rules at phase transitions. We also found that stance duration determined cycle duration in the different locomotor directions/conditions, consistent with a common rhythm-generating mechanism for different locomotor directions. Our findings provide additional insight on how left-right spinal networks and sensory feedback from the limbs interact to coordinate the hindlimbs and provide stability during locomotion in different directions. KEY POINTS: Terrestrial mammals can walk forward and backward, which is controlled in part by spinal sensorimotor circuits. Humans and cats also perform bidirectional or hybrid locomotion on a split-belt treadmill with one leg going forward and the other going backward. We show that cats with a spinal transection can perform hybrid locomotion and maintain left-right out-of-phase coordination, indicating that spinal sensorimotor circuits can perform simultaneous forward and backward locomotion. We also show that the regulation of cycle duration and phase duration is conserved across stepping direction, consistent with a common rhythm-generating mechanism for different stepping directions. The results help us better understand how spinal networks controlling the left and right legs enable locomotion in different directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP285473 | DOI Listing |
Int J Oncol
February 2025
Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China.
Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of General Practice, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
Circular RNAs (circRNAs), covalently closed single-stranded RNAs, have been implicated in cancer progression. A previous investigation revealed that circ-ZEB1 is expressed abnormally in liver cancer. However, the roles of circ-ZEB1 in non-small cell lung cancer (NSCLC) are unknown.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.
Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.
View Article and Find Full Text PDFPLoS One
January 2025
Clinic for Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.
View Article and Find Full Text PDFCells
December 2024
Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK.
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!