Current feed formulation and evaluation practices rely on static values for the nutritional value of feed ingredients and assume additivity. Hereby, the complex interplay among nutrients in the diet and the highly dynamic digestive processes are ignored. Nutrient digestion kinetics and diet × animal interactions should be acknowledged to improve future predictions of the nutritional value of complex diets. Therefore, an in silico nutrient-based mechanistic digestion model for growing pigs was developed: "SNAPIG" (Simulating Nutrient digestion and Absorption kinetics in PIGs). Aiming to predict the rate and extent of nutrient absorption from diets varying in ingredient composition and physicochemical properties, the model represents digestion kinetics of ingested protein, starch, fat, and non-starch polysaccharides, through passage, hydrolysis, absorption, and endogenous secretions of nutrients along the stomach, proximal small intestine, distal small intestine, and caecum + colon. Input variables are nutrient intake and the physicochemical properties (i.e. solubility, and rate and extent of degradability). Data on the rate and extent of starch and protein hydrolysis of different ingredients per digestive segment were derived from in vitro assays. Passage of digesta from the stomach was modelled as a function of feed intake level, dietary nutrient solubility and diet viscosity. Model evaluation included testing against independent data from in vivo studies on nutrient appearance in (portal) blood of growing pigs. When simulating diets varying in physicochemical properties and nutrient source, SNAPIG can explain variation in glucose absorption kinetics (postprandial time of peak, TOP: 20-100 min observed vs 25-98 min predicted), and predict variation in the extent of ileal protein and fat digestion (root mean square prediction errors (RMSPE) = 12 and 16%, disturbance error = 12 and 86%, and concordance correlation coefficient = 0.34 and 0.27). For amino acid absorption, the observed variation in postprandial TOP (61 ± 11 min) was poorly predicted despite accurate mean predictions (58 ± 34 min). Recalibrating protein digestion and amino acid absorption kinetics require data on net-portal nutrient appearance, combined with observations on digestion kinetics, in pigs fed diets varying in ingredient composition. Currently, SNAPIG can be used to forecast the time and extent of nutrient digestion and absorption when simulating diets varying in ingredient and nutrient composition. It enhances our quantitative understanding of nutrient digestion kinetics and identifies knowledge gaps in this field of research. Already useful as research tool, SNAPIG can be coupled with a postabsorptive metabolism model to predict the effects of dietary and feeding-strategies on the pig's growth response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.animal.2023.101025 | DOI Listing |
Vet Anim Sci
March 2025
Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).
View Article and Find Full Text PDFHeliyon
July 2024
Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden.
Monoterpenoids are interesting hydrocarbons typically found in essential oils and have a significant role in medicinal and biological purposes. The goal of this study was to investigate the effects of two monoterpenoids, carvacrol (CAR) and menthol (MEN), supplemented with leaf meal (MOLM) based diets on growth parameters, digestibility and body composition of Nile tilapia (). Alongside the basal diet (control-T1), nine experimental diets supplemented with categorized levels of CAR and MEN at 200, 300 and 400 mg/kg individually and their mixtures (MIX) (1:1) (CAR-T2, 200; T3, 300; T4, 400 mg/kg, MEN-T5, 200; T6, 300; T7, 400 mg/kg and MIX- (1:1) T8, 200; T9, 300; T10, 400 mg/kg) were fed to the fingerlings (6.
View Article and Find Full Text PDFNat Metab
January 2025
Monell Chemical Senses Center, Philadelphia, PA, USA.
The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Animal Production Department, Faculty of Agriculture, Ain-Shams University, 68 Hadayek Shoubra, Cairo, 111241, Egypt.
This study was designed to evaluate the effect of substituting alfalfa hay with graded levels panicum maximum without or with graded levels of spirulina supplementation on rumen fermentation and nutrient degradability. The evaluation was achieved through an in vitro study, rumen fluid was obtained from adult sheep aged 2 years (fed clover hay), immediately after slaughter. Experimental diets were formulated as isonitrogenous and isocaloric and contained 40% forage.
View Article and Find Full Text PDFJ Insect Physiol
January 2025
Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. Electronic address:
Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera, Psychodidae), is the primary vector of Leishmania infantum Nicole, 1908, the etiological agent of American visceral leishmaniasis. During their development, sandfly larvae pass through four instars, consuming soil particles enriched with microorganisms and decomposing organic material. In numerous insect species, the intestinal epithelium not only secretes digestive enzymes and absorbs digested nutrients but also carries out additional functions, such as regulating luminal pH and facilitating the absorption or secretion of ions and water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!